Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1602-1607, July, 2014
Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route
E-mail:
Highly visible light active 1% and 3% Ag@ZnO nanocomposites were synthesized via a gel combustion route using citric acid as a fuel. The formation of the nanocomposites with enhanced properties was confirmed using a range of characterization techniques, photocatalysis and photoelectrochemical studies. Compared to the pristine ZnO nanoparticles, the Ag@ZnO nanocomposites exhibited enhanced visible light photocatalytic activity for the degradation of methylene blue and photoelectrochemical response. A mechanism was proposed to account for the photocatalytic activities of the Ag@ZnO nanocomposite that showed the surface plasmon resonance (SPR) of Ag is an effective way of enhancing the visible light photocatalytic activities.
Keywords:Composites materials;Nanostructures;Chemical synthesis;Visible light;Photocatalytic properties
- Whang TJ, Hsieh MT, Chen HH, Appl. Surf. Sci., 258(7), 2796 (2012)
- Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
- Rastogi K, Sahu JN, Meikap BC, Biswas MN, J. Hazard. Mater., 158(2-3), 531 (2008)
- Ansari SA, Nisar A, Fatma B, Khan W, Naqvi AH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 177, 428 (2012)
- Daneshvar N, Salari D, Khataee AR, J. Photochem. Photobiol. A-Chem., 162, 317 (2004)
- Ahmad M, Hong Z, Ahmed E, Khalid NR, Elhissic A, Ahmad W, Ceram. Int., 39, 3007 (2013)
- Pouretedal HR, Shafeie A, Keshavarz MH, J. Korean Chem. Soc., 56, 484 (2012)
- Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH, Nanoscale, 5, 6323 (2013)
- Zhou Y, Huang Y, Dang L, Wenhong H, Mater. Res. Bull., 487, 2420 (2013)
- Bansal A, Madhavi S, Tan TTY, Lim TM, Catal. Today, 131(1-4), 250 (2008)
- Khan MM, Ansari SA, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.02.030 (2013)
- Wang P, Huang B, Dai Y, Whangbo MH, Phys. Chem. Chem. Phys., 14, 9813 (2012)
- Chen PK, Lee GJ, Davies SH, Masten SJ, Amutha R, Wu JJ, Mater. Res. Bull., 48(6), 2375 (2013)
- Li B, Hu GS, Jin LY, Hong X, Lu JQ, Luo MF, J. Ind. Eng. Chem., 19(1), 250 (2013)
- Chang G, Xu J, Zhang Y, Ma S, Xin L, Zhu L, Xu C, J. Phys. Chem. C, 113, 18761 (2009)
- Yang ZM, Zhang P, Ding YH, Jiang Y, Long ZL, Dai WL, Mater. Res. Bull., 46(10), 1625 (2011)
- Sun F, Qiao X, Tan F, Wang W, Qiu X, J. Mater. Sci., 474, 7262 (2012)
- Yin X, Que W, Fei D, Shen F, Guo Q, J. Alloy. Compd., 524, 13 (2012)
- Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM, Inorg. Chem., 46(17), 6980 (2007)
- Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, J. Phys. Chem. C, 112, 10773 (2008)
- Sun SM, Wang WZ, Zeng SZ, Shang M, Zhang L, J. Hazard. Mater., 178(1-3), 427 (2010)
- Zhang F, Zheng Y, Cao Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, J. Mater. Chem., 19, 2771 (2009)
- Chen C, Zheng Y, Zhan Y, Lin X, Zheng Q, Wei K, DaltonTrans., 40, 9566 (2011)
- Hiramatsu H, Osterloh FE, Chem. Mater., 16, 2509 (2004)
- Khan MM, Kalathil S, Lee J, Cho MH, Bull. Korean Chem. Soc., 33, 2592 (2012)
- Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928 (2005)
- Shan G, Xu L, Wang G, Liu Y, J. Phys. Chem. C, 111, 3290 (2007)
- Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ, Sol. Energy Mater. Sol. Cells, 90(12), 1773 (2006)
- Jing L, Xu Z, Shang J, Sun X, Cai W, Guo H, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 356 (2002)
- Lin D, Wu H, Zhang R, Pan W, Chem. Mater., 21, 3479 (2009)
- Bai XJ, Wang L, Zong RL, Lv YH, Sun YQ, Zhu YF, Langmuir, 29(9), 3097 (2013)
- Ansari SA, Khan MM, Kalathil S, Nisar A, Lee J, Cho MH, Nanoscale, http://dx.doi.org/10.1039/C3NR02678G (2013)
- Khan MM, Kalathil S, Lee J, Cho MH, Bull. Korean Chem. Soc., 33, 1753 (2012)
- Yadav SK, Madeshwaran SR, Cho JW, J. Colloid Interface Sci., 358(2), 471 (2011)
- Yu H, Ming H, Zhang HC, Li HT, Pan KM, Liu Y, Wang F, Gong JJ, Kang ZH, Mater. Chem. Phys., 137(1), 113 (2012)
- Khan MM, Ansari SA, Lee J, Cho MH, Nanoscale, 5, 4427 (2013)