화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1779-1792, July, 2014
Modeling of synthesis gas and hydrogen production in a thermally coupling of steam and tri-reforming of methane with membranes
E-mail:
In this novel study, tri-reforming process was used as a heat source to proceed steam reforming of methane in a two membrane hydrogen perm-selective Pd/Ag thermally coupled reactor. Results illustrated that H2/CO ratio at the output of steam and tri-reforming sides reached to 6.1 and 0.9, respectively. Additionally the results showed that methane conversion at the output of steam and trireforming sides reached to 31% and 96%, respectively. By increasing the feed flow rate of tri-reforming side from 28,120 to 140,600 kmol h-1, methane conversion and H2 molar flow rate enhanced 40% and 28.64%, respectively.
  1. Edwards P, Kuznetsov V, David W, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 365, 1043 (2007)
  2. Cai JL, Wang GC, Int. J. Hydrog. Energy, 37(20), 15070 (2012)
  3. Turner JA, Science, 305, 972 (2004)
  4. Schrope M, Nature, 414, 682 (2001)
  5. Hoffman P, Tomorrow’s Energy, MIT Press, USA, 2002.
  6. Haryanto A, Fernando S, Murali N, Adhikari S, Energy Fuels, 19(5), 2098 (2005)
  7. Badmaev SD, Snytnikov PV, Int. J. Hydrog. Energy, 33(12), 3026 (2008)
  8. Aboosadi ZA, Rahimpour MR, Jahanmiri A, Int. J. Hydrog. Energy, 36(4), 2960 (2011)
  9. Barbieri G, Violante V, Dimaio FP, Criscuoli A, Drioli E, Ind. Eng. Chem. Res., 36(8), 3369 (1997)
  10. Collodi G, Wheeler F, Chem. Eng. Trans., 19, 37 (2010)
  11. Oklany JS, Hou K, Hughes R, Appl. Catal. A: Gen., 170(1), 13 (1998)
  12. Armor JN, J. Membr. Sci., 147(2), 217 (1998)
  13. Chibane L, Djellouli B, Int. J. Chem. Eng. Appl., 2, 147 (2011)
  14. Marigliano G, Barbieri G, Drioli E, Catal. Today, 67(1-3), 85 (2001)
  15. Rahimpour MR, Dehnavi MR, Allahgholipour F, Iranshahi D, Jokar SM, Appl. Energy, 99, 496 (2012)
  16. Elnashaie SSEH, Moustafa T, Alsoudani T, Elshishini SS, Comput. Chem. Eng., 24(2-7), 1293 (2000)
  17. Ramaswamy RC, Ramachandran PA, Dudukovic MP, Chem. Eng. Sci., 61(2), 459 (2006)
  18. Amin NAS, Yaw TC, Int. J. Hydrog. Energy, 32(12), 1789 (2007)
  19. Khademi MH, Setoodeh P, Rahimpour MR, Jahanmiri A, Int. J. Hydrog. Energy, 34(16), 6930 (2009)
  20. Ventura C, Azevedo JLT, Int. J. Hydrog. Energy, 35(18), 9776 (2010)
  21. Song C, Chem. Innov., 31, 21 (2001)
  22. Aboosadi ZA, Jahanmiri AH, Rahimpour MR, Appl. Energy, 88(8), 2691 (2011)
  23. Yu W, Ohmori T, Yamamoto T, Endo A, Nakaiwa A, Itoh N, Chem. Eng. Sci., 62(18-20), 5627 (2007)
  24. De Falco M, Nardella P, Marrelli L, Di Paola L, Basile A, Gallucci F, Chem. Eng. J., 138(1-3), 442 (2008)
  25. Buxbaum RE, Kinney AB, Ind. Eng. Chem. Res., 35(2), 530 (1996)
  26. Phillpott J, Coupland DR, in: Paal Z, Menon PG (Eds.), Hydrogen Effects in Catalysis, Marcel Dekker, New York, 1988, p. 679.
  27. Rahimpour MR, Ghader S, Chem. Eng. Technol., 26(8), 902 (2003)
  28. Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 31(1), 38 (2008)
  29. Rahimpour MR, Mostafazadeh AK, Barmaki MM, Fuel Process. Technol., 89(12), 1396 (2008)
  30. Rahimpour MR, Asgari A, J. Hazard. Mater., 153(1-2), 557 (2008)
  31. Rahimpour MR, Alizadehhesari K, Int. J. Hydrog. Energy, 34(3), 1349 (2009)
  32. Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 30(8), 1062 (2007)
  33. Rahimpour MR, Ghader S, Chem. Eng. Process., 43(9), 1181 (2004)
  34. Itoh N, Wu TH, J. Membr. Sci., 124(2), 213 (1997)
  35. Moustafa TM, Elnashaie SSEH, J. Membr. Sci., 178(1-2), 171 (2000)
  36. Patel KS, Sunol AK, Int. J. Hydrog. Energy, 32(13), 2344 (2007)
  37. Khademi MH, Jahanmiri A, Rahimpour MR, Int. J. Hydrog. Energy, 34(12), 5091 (2009)
  38. Khademi MH, Rahimpour MR, Jahanmiri A, Int. J. Hydrog. Energy, 35(5), 1936 (2010)
  39. Fourth methanol documents of Lurgi. Zagros Petrochemical Complex in Assaluyeh, Iran.
  40. Cho W, Song T, Mitsos A, McKinnon JT, Ko GH, Tolsma JE, Denholm D, Park T, Catal. Today, 139, 261 (2009)
  41. Xu J, Froment GF, AIChE J., 35, 88 (1989)
  42. Xiu GH, Li P, Rodrigues AE, Chem. Eng. Sci., 57(18), 3893 (2002)
  43. Trimm DL, Lam CW, Chem. Eng. Sci., 35, 1405 (1980)
  44. de Smet CRH, de Croon MHJM, Berger RJ, Marin GB, Schouten JC, Chem. Eng. Sci., 56(16), 4849 (2001)
  45. Degroote AM, Froment GF, Kobylinski T, Can. J. Chem. Eng., 74(5), 735 (1996)
  46. Gosiewski K, Bartmann U, Moszczynski M, Mleczko L, Chem. Eng. Sci., 54(20), 4589 (1999)
  47. Degroote AM, Froment GF, Appl. Catal. A: Gen., 138(2), 245 (1996)
  48. Graaf G, Scholtens H, Stamhuis E, Beenackers A, Chem. Eng. Sci., 45, 773 (1990)
  49. Barbieri G, Dimaio FP, Ind. Eng. Chem. Res., 36(6), 2121 (1997)
  50. Lindsay AL, Bromley LRA, Ind. Eng. Chem. Res., 42, 1508 (1950)
  51. Smith JM, Van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamic, 6th ed., McGraw-Hill, Boston, 2001.
  52. Cussler EL, Diffusion: Mass Transfer in Fluid Systems, University Press, Cambridge, 1984.
  53. Reid RC, Sherwood TK, Prausnitz J, The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977.
  54. Smith JM, Chemical Engineering Kinetics, McGraw-Hill, New York, 1980.