화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.4, 497-502, August, 2014
주목 식물세포(Taxus chinensis)배양으로부터 파클리탁셀 정제를 위한 흡착제 처리 공정 최적화
Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis
E-mail:
초록
바이오매스 유래 타르 및 왁스 성분은 파클리탁셀의 분리정제에 많은 악영향을 미치기 때문에 반드시 제거되어야 한다. 흡착제 처리는 식물세포배양으로부터 유래된 타르 및 왁스 성분을 매우 간단하고 효과적으로 제거할 수 있는 방법이다. 본 연구에서는 전처리 단계에서 상용흡착제 실로퓨트를 이용한 흡착제 처리 공정에서 주요 공정 변수들(온도, 시간, 용매, 건조시료/실로퓨트 비율)을 최적화하였다. 최적의 흡착제 처리 온도, 시간, 용매, 건조시료/실로퓨트 비율은 각각 30 ℃, 15분, 메틸렌 클로라이드, 1:1(w/w)이었다. 이러한 결과는 TGA와 HPLC 분석을 통한 유기물의 흡착 양상으로도 확인하였다. 흡착제 처리 단계에서 순도 증가는 미미하였으나 타르 및 왁스 성분의 제거로 인한 후속공정의 공정 가능성과 편리성에 상당히 영향을 미쳤다.
Biomass-derived tar and waxy compounds have a highly negative effect on the separation and purification of paclitaxel and should be removed prior to final purification. Adsorbent treatment is a simple, efficient method for removal of tar and waxy compounds from plant cell cultures. In this study, we optimized the important process parameters (adsorption temperature, time, solvent type and adsorbent amount) of adsorbent treatment with Sylopute to remove the tar and waxy compounds in a pre-purification step. The optimal adsorption temperature, adsorption time, solvent type, and crude extract/Sylopute ratio were 30 °C, 15 min, methylene chloride, and 1:1(w/w), respectively. This result could be confirmed by HPLC analysis of the absorbent after treatment and TGA of the organic substances that were bound to the adsorbent. In adsorbent treatment step, the purity seemed to show a small improvement but this treatment had a significant effect on convenience and feasibility of following steps by the removal of tar and waxy compounds.
  1. Kim JH, Kor. J. Biotechnol. Bioeng., 21, 1 (2006)
  2. Rao KV, Hanuman B, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003 (1995)
  3. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068 (1999)
  4. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Hong SS, Lee HS, “Method for Mass Production of Taxol by Semi-Continuous Culture with Taxus chinensis Cell Culture,” U.S. Patent No. 5,871,979 (1999)
  5. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59 (2002)
  6. Jeon KY, Kim JH, Process Biochem., 44, 736 (2009)
  7. Rao KV, “Method for the Isolation and Purification of Taxol and Its Natural Analogues,” U.S. Patent No. 5,670, 673 (1997)
  8. Castor TP, “Method and Apparatus for Isolating Therapeutic Compositions from Source Materials,” U.S. Patent No. 5, 750, 709 (1998)
  9. ElSohly HN, Croom EM, ElSohly MA, McChesney JD, “Methods and Compositions for Isolating Taxanes,” U.S. Patent No. 5, 618,538 (1997)
  10. Ko KY, Kim IH, Korean Chem. Eng. Res., 52(1), 98 (2014)
  11. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679 (2002)
  12. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985 (2004)
  13. Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40, 1113 (2005)
  14. Han MG, Jeon KY, Mun SY, Kim JH, Process Biochem., 45, 1368 (2010)
  15. Sim HA, Lee JY, Kim JH, Sep. Purif. Technol., 89, 112 (2012)
  16. Lee JY, Kim JH, Sep. Purif. Technol., 103, 8 (2013)
  17. Lee DH, Kim SG, Mun SY, Kim JH, Process Biochem., 45, 1134 (2010)
  18. Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151 (1968)
  19. Jeon YL, Kim JH, Korean J. Chem. Eng., 30(10), 1954 (2013)
  20. Lee JY, Kim JH, Sep. Purif. Technol., 80(2), 240 (2011)
  21. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem. Mater., 11, 1110 (1999)