화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.26, No.3, 277-291, August, 2014
What are typical sources of error in rotational rheometry of polymer melts?
E-mail:
Rheometers have made giant leaps in terms of usability, sensitivity, and versatility. This leads to the illusion that a rheometer can be used as a fool-proof device for measuring rheological properties. The article will focus on typical problems that are encountered in rheological practice when measuring polymer melts. Emphasis is put on problems related to measurement artefacts stemming from the rheometer as well as from the material itself. Furthermore, possibilities to eliminate rheometer related artefacts mostly related to the following phenomena - geometry inertia, thermal expansion, torque resolution, and environmental control - will be discussed. The sample related artefacts vary significantly from sample to sample and include: thermal degradation, nonlinear shear deformation, centrifugal forces, slip and shear banding, as well as miscibility, orientation, and distribution of different phases, of which only the ones occurring in homogeneous polymer melts are discussed here.
  1. Agassant JF, Arda DR, Combeaud C, Merten A, Munstedt H, Mackley MR, Robert L, Vergnes B, Int. Polym. Process., 21(3), 239 (2006)
  2. Auhl D, Molekulare struktur und rheologische eigenschaften von strahlenmodifizierten polypropylen, Lehrstuhl fur Polymerwerkstoffe, Erlangen, Friedrich-Alexander Universitat Erlangen-Nurnberg, Ph. D. (2006)
  3. Barnes HA, Bell D, Korea-Aust. Rheol. J., 15(4), 187 (2003)
  4. basell Polyolefins, Polyethylen - Produkte und eigenschaften (2003)
  5. Cheng G, Akhtar MS, Yang OB, Stadler FJ, ACS Appl. Mater. Interfaces, 5, 6635 (2013)
  6. Dealy J, Larson RG, Structure and rheology of molten polymers - From structure to flow behavior and back again, Munich, Hanser (2006)
  7. den Doelder J, Personal communication (eMail) (2004)
  8. Dijkstra DJ, Pure Appl. Chem., 81, 339 (2009)
  9. Edler R, Aufbau eines rheometers mit magnetischer lagerung, Lehrstuhl fur Kunststoffe, Erlangen, Friedrich-Alexander University Erlangen-Nurnberg, Diploma (1986)
  10. Friedrich C, Antonov YY, Macromolecules, 40(4), 1283 (2007)
  11. Frischknecht AL, Milner ST, Pryke A, Young RN, Hawkins R, McLeish TCB, Macromolecules, 35(12), 4801 (2002)
  12. Gabriel C, Kaschta J, Rheol. Acta, 37(4), 358 (1998)
  13. Gabriel C, Munstedt H, Rheol. Acta, 38(5), 393 (1999)
  14. Gabriel C, Einfluss der molekularen Struktur auf das viskoelastische Verhalten von Polyethylenschmelzen, Aachen, Shaker-Verlag (2001)
  15. Graessley WW, Polymeric liquids & networks: Dynamics and rheology, London, Taylor & Francis (2008)
  16. Kaminsky W, Personal Communication (2004)
  17. Karimkhani V, Afshar TF, Pourmahdian S, Stadler FJ, Polym. Chem., 4, 3774 (2013)
  18. Klimke K, Optimised polyolefin branch quantification by 13C NMR spectroscopy, Mainz, Max-Planck Institute of Polymers, Ph.D. (2006)
  19. Link G, Schwarzl FR, Rheol. Acta, 24, 211 (1985)
  20. Liu CY, Yao ML, Garritano RG, Franck AJ, Bailly C, Rheol. Acta, 50(5-6), 537 (2011)
  21. McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottiere B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN, Macromolecules, 32(20), 6734 (1999)
  22. Munstedt H, Schwetz M, Heindl M, Schmidt M, Rheol. Acta, 40(4), 384 (2001)
  23. Munstedt H, Steffl T, Malmberg A, Rheol. Acta, 45(1), 14 (2005)
  24. Munstedt H, J. Rheol., 58, 565 (2014)
  25. Ngai KL, Plazek DJ, Temperature dependences of the viscoelastic response of polymer systems, In: J.E. Mark ed., Physical properties of polymers handbook, Heidelberg, Springer (2007)
  26. Patham B, Jayaraman K, J. Rheol., 49(5), 989 (2005)
  27. Piel C, Personal communication (2004)
  28. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Munstedt H, Kaminsky W, Macromol. Chem. Physic., 207, 26 (2006)
  29. Piel C, Starck P, Seppala JV, Kaminsky W, J. Polym. Sci. A: Polym. Chem., 44(5), 1600 (2006)
  30. Plazek DJ, J. Polym. Sci. Pol. Phys., 6, 621 (1968)
  31. Rulhoff S, Kaminsky W, Macromol. Symp., 236, 161 (2006)
  32. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelmt M, Kaminsky W, Munstedt H, Macromolecules, 39(4), 1474 (2006)
  33. Stadler FJ, Piel C, Kaminsky W, Munstedt H, Macromol. Symp., 236, 209 (2006)
  34. Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Munstedt H, Rheol. Acta, 45(5), 755 (2006)
  35. Stadler FJ, Gabriel C, Munstedt H, Macromol. Chem. Physic., 208, 2449 (2007)
  36. Stadler FJ, Muenstedt H, J. Rheol., 52(3), 697 (2008)
  37. Stadler FJ, Pyckhout-Hintzen W, Schumers JM, Fustin CA, Gohy JF, Bailly C, Macromolecules, 42(16), 6181 (2009)
  38. Stadler FJ, Arikan B, Kaschta J, Kaminsky W, Macromol. Chem. Physic., 211, 1472 (2010)
  39. Stadler FJ, Karimkhani V, Macromolecules, 44(13), 5401 (2011)
  40. Tao FF, Auhl D, Baudouin AC, Stadler FJ, Bailly C, Macromol. Chem. Physic., 214, 350 (2013)
  41. Tapadia P, Wang SQ, Macromolecules, 37(24), 9083 (2004)
  42. Walter P, Trinkle S, Lilge D, Friedrich C, Mulhaupt R, Macromol. Mater. Eng., 286, 309 (2001)
  43. Wilhelm M, Macromol. Mater. Eng., 287, 83 (2002)
  44. Williams ML, Landel RF, Ferry JD, J. Am. Chem. Soc., 77, 3701 (1955)
  45. Wolff F, Resch JA, Kaschta J, Munstedt H, Rheol. Acta, 49(1), 95 (2010)
  46. Wolff F, Munstedt H, Rheol. Acta, 52(4), 287 (2013)