화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.1, 83-90, February, 1996
Acridine Orange와 Aerosol OT 사이의 상호작용에 관한 염효과의 연구
Salt Effect on Interaction between Acridine Orange and Aerosol OT
초록
AO-AOT계내에서 S/D의 증가에 따라 흡수 및 형광 spectra의 변화 양상이 감소하다가 증가함을 알 수 있으며 회합 및 해리가 일어남을 알 수 있다. 그리고 온도 상승에 따라 순수한 AO계에서는 흡광도가 증가하나 premicellar영역(S/D=10, 20, 50 및 80)내에서는 흡광도가 오히려 점차 감소한다. 한편 AO-AOT계에 첨가한 염의 농도가 증가함에 따라 metachromasy 소멸도는 증가하나 NaNO3의 경우는 이와 반대로 나타난다. 이러한 염의 양이온에 대한 metachromasy 소멸도의 증가 순서는 Li+, Na+>Mg2+>Ca2+이며, 염의 음이온에 대해서는 Cl-> SO42->NO3-로 나타남을 알 수 있었다.
The changing shape of absorption and fluorescence spectra will increasing S/D in AO-AOT system decreases and then increases again. The aggregation and disaggreation in AO-AOT system occurres. According to increasing temperature, the absorbance increases in pure AO system. But it gradually decreases in premicellar range(S/D = 10, 20, 50 and 80). The disappearance degree of metachromasy according to the concentration of added salt to AO-AOT system is increased. However, the case of NaNO3 is reversed. The order of disappearance degree of metachromasy on cationic salts is Li+, Na+>Mg2+>Ca 2+, and the order of it on anionic salts is Cl-> SO42->NO3-.
  1. Neumann MG, Hioka N, J. Appl. Polym. Sci., 34, 2829 (1989) 
  2. Mukerjee P, Ghosh AK, J. Am. Chem. Soc., 92, 6403 (1970) 
  3. Braswell EH, J. Phys. Chem., 88, 3653 (1984) 
  4. Buldini PL, Anal. Chim. Acta, 82, 187 (1976) 
  5. Vitagliano V, Costantino L, Anal. Chim. Acta, 74, 197 (1970) 
  6. Shirai M, Yamashita M, Tanaka M, Makromol. Chem., 178, 37 (1977) 
  7. Vitagliano V, Costantino L, J. Phys. Chem., 77, 224 (1973)
  8. Yamaoka K, Takatsuki M, Bull. Chem. Soc. Jpn., 54, 923 (1981) 
  9. Lee H, Lee HS, J. Korean Chem. Soc., 35, 612 (1991)
  10. Attood D, Florence AT, "Surfactant Systems," 40, Chapman and Hall Press, New York (1983)
  11. Florence AT, "Biological Implication of Micelle Formation in Micellization, Solubilization and Microemulsions," 1, 55, K.L. Mittal Ed., Plenum, New York (1977)
  12. Tingeny JM, Fulton JL, Smith RD, J. Phys. Chem., 94, 1997 (1990) 
  13. Berthod A, Carvalho MD, Anal. Chem., 64, 267 (1992)
  14. Conner CJO, Fendler EJ, Fendler JH, J. Am. Chem. Soc., 95, 600 (1973) 
  15. Singhal GS, Rabinowitch JH, Srinivasan V, Photochem. Photobiol., 11, 531 (1970)
  16. Kenney-Wallace GA, Flint JH, Wallace SC, Chem. Phys. Lett., 32, 71 (1975) 
  17. Gratzel M, "Hetrogeneous Photochemical Electron Transfer," 72, CRC Press, Florida (1989)
  18. Kim SH, Song KD, J. Korean Ind. Eng. Chem., 5(5), 779 (1994)
  19. Cohen R, Yariv S, J. Chem. Soc.-Faraday Trans., 80, 1705 (1984) 
  20. Park JW, Chung H, Bull. Korean Chem. Soc., 7, 113 (1986)
  21. Lessing HE, VonJena A, Chem. Phys., 41, 395 (1979) 
  22. Mataga N, Koizumi M, Nippon Kagaki Zasshi, 75, 35 (1954)
  23. Sato H, Kawasaki M, Kasatani K, Nakshima N, Yoshihara K, Bull. Chem. Soc. Jpn., 56, 3588 (1983) 
  24. Rosen MJ, "Surfactants and Interfacial Phenomena," 2nd ed., 190, Wiley Press, Canada (1989)
  25. Selinger BK, Wakins AR, Chem. Phys. Lett., 56, 104 (1978)
  26. Kusumoto Y, Sato H, Chem. Phys. Lett., 61, 88 (1979) 
  27. Ban T, Kasatani K, Kawasaki M, Sato H, Photochem. Photobiol., 37, 131 (1983)
  28. Lai WC, Dixit NS, Mackay RA, J. Phys. Chem., 88, 5364 (1984) 
  29. Selywyn JE, Steinfeld JI, J. Phys. Chem., 70, 1695 (1966)
  30. Bose HS, Ind. J. Chem., 26A, 652 (1987)