화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.1, 118-128, February, 1996
4차 Ammonium 기를 가진 새로운 수용성 Chitosan 유도체의 제조 및 이들의 응집거동에 관한 연구
Synthesis of Water Soluble Chitosan Derivatives with Quaternary Ammonium Salt and Their Flocculating Behavior
초록
양이온성 천연 고분자 전해질인 chitosan의 수용성 유도체를 제조하기 위해 chitosan에 먼저 Schiff's base를 형성시키고, 이를 다시 환원시키는 방법으로 chitosan에 N-methyl, N-butyl, N,N-dibutyl기를 각각 도입시킨 후, NMP중에서 methyl iodide를 이용하여 4차 ammonium 기가 도입된 chitosan 유도체를 합성하였다. 이 반응에서 선택적인 N-alkyl 유도체 뿐 아니라 O-alkyl 또한 진행됨을 확인하였다. 제조한 각 4 차 ammonium기가 도입된 chitosan 유도체의 응집성능을 검토하기 위해 제지공장 폐수를 대상으로 응집실험을 행한 결과, chitosan 에서와는 달리 거의 모든 pH 영역에서 일정하게 뛰어난 투과도와 COD 제거율을 보였으며, alkyl 기의 탄소수가 증가할수록 응집능은 증가되었고 그 중에서도 N-butyl dimethyl chitosan ammonium iodide가 가장 우수하였다. 그러나 N-dibutyl methyl chitosan ammonium iodide는 오히려 chitosan 자체보다 감소하는 경향을 나타내었다.
N-methyl, N-butyl and N,N-dibutyl chitosan derivatives were prepared by Schiff's base formation and hydrogenation in aqueous media. Furthermore quaternization of the chitosan derivatives was performed in N-methyl-2-pyrrolidone using methyl iodide to obtain water soluble cationic polyelectrolytes. It was confirmed that O-alkylation was occured as well as selective N-alkylation in these reactions. Chitosan and chitosan derivatives with quaternary ammonium iodide showed high flocculation power as the cationic flocculant. When tested on paper mill waste water, they showed high flocculation power, independing of pH range. The flocculation power was increased as the N-alkyl chain length was increased. Among them, N-butyl dimethyl chitosan ammonium iodide showed better flocculation power than chitosan. But, N,N-dibutyl-N-methyl chitosan ammonium iodide showed less flocculation powre than chitosan itself.
  1. Kim YM, Choi KS, Polym.(Korea), 9(5), 435 (1985)
  2. Kim YM, Choi KS, Chung TS, Kim CK, Polym.(Korea), 12(1), 86 (1988)
  3. Choi KS, Macromol. Chem. Macromol. Symp., 33, 55 (1990)
  4. Unno H, Chem. Ind., 74, 178 (1984)
  5. Muzzarelli RAA, Jeuniaux C, Gooday GW, "Chitin in Nature and Technology," Plenum Press, New York, NY (1986)
  6. Cho SK, Kim SJ, Jung BO, Kim JJ, Choi KS, Lee YM, J. Korean Ind. Eng. Chem., 5(5), 899 (1994)
  7. Kim CH, Lee JW, Jung BO, Chang BK, Choi KS, Kim JJ, J. Korean Ind. Eng. Chem., 6(1), 130 (1995)
  8. Kim CH, Jo SK, Jung BO, Chang BK, Choi KS, Kim JJ, J. Korean Ind. Eng. Chem., 6(2), 267 (1995)
  9. Mima S, Miya M, Iwamoto R, Yoshikawa S, J. Appl. Polym. Sci., 28, 1909 (1983) 
  10. Rinaudo DM, Terracin C, Int. J. Biol. Macromol., 8, 105 (1986) 
  11. Muzarelli RAA, Tafani F, Carbohydr. Polym., 5, 297 (1985) 
  12. Roberts GAF, Domszy JG, Int. J. Biol. Macromol., 4, 374 (1982) 
  13. Williamson SL, McCormick CL, Polym. Prepr., 34, 572 (1994)
  14. Saito H, Tabeta R, Hirano S, "Chitin and Chitosan," S. Hirano and S. Tokura (eds.), 71-76, The Japanese Society of Chitin and Chitosan, Tottori (1982)
  15. Nishimura S, Matsuoka K, Furuike T, Kurita K, "Chitin Derivatives in Life Science," S. Tokura and I. Azuma (eds.), 131-138, Sapporo, Japan (1992)
  16. Muzarelli RAA, Tanfani F, Emanuelli M, Mariotti S, J. Membr. Sci., 16, 295 (1983) 
  17. Deanin RD, "Polymer Structure, Properties and Application," 311, Cahners Press, U.S.A. (1972)
  18. Doddrell DM, Pegg DT, Bendall MR, J. Magn. Res., 48, 323 (1982)