화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.172, No.1, 509-523, 2014
Calix[n]arene Carboxylic Acid Derivatives as Regulators of Enzymatic Reactions: Enhanced Enantioselectivity in Lipase-Catalyzed Hydrolysis of (R/S)-Naproxen Methyl Ester
Candida rugosa lipase was immobilized with a sol-gel encapsulation procedure in the presence and absence of a calix[n]arene carboxylic acid derivative grafted onto magnetic nanoparticles or in the presence of the calix[n]arene carboxylic acid derivative with Fe3O4 magnetic nanoparticles as an additive. Through the enantioselective hydrolysis of racemic naproxen methyl ester and the hydrolysis of p-nitrophenylpalmitate, the relative enzyme activity was evaluated and tested. These results show that the encapsulated lipase without supports has lower conversion and enantioselectivity compared to the Calix[n]COOH-based encapsulated lipase. It has also been observed that the Calix[4]COOH-based encapsulated lipase has excellent enantioselectivity (enantiomeric ratio (E) > 400) as compared to encapsulated-free lipase enantioselectivity (E = 137), and it also has an enantiomeric excess value of similar to 98 % for S-naproxen.