화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.172, No.7, 3558-3569, 2014
Modification of Lysine Residues of Horseradish Peroxidase and Its Effect on Stability and Structure of the Enzyme
Biotechnology is consistently seeking improved enzyme stability. Enzymes have great properties, although their marginal stability limits their applications. Among the strategies for improving stability of the enzymes, chemical modification is a simple and effective technique. In the present study, chemical modification of horseradish peroxidase (HRP) was carried out with 2,3-dichloromaleic anhydride and 2,3-dimethylmaleic anhydride. HRP is an important heme-containing enzyme. It is widely applied in pharmacological, chemical, and medical industries. Here, thermal stability of HRP was investigated at different temperatures. In addition, the enzyme stability was evaluated in urea, DMSO, alkaline pH, and hydrogen peroxide solutions by spectroscopic techniques. Structural investigation indicated that the both anhydrides slightly decrease compactness of the enzyme structure. The results also indicated that 2,3-dichloromaleic anhydride increases thermal stability of the enzyme and its stability in urea and DMSO solutions, but 2,3-dimethylmaleic anhydride only stabilizes HRP in urea solution. Furthermore, the experiments implied that none of the modifiers are effective on the stability of HRP in extreme pH and oxidative condition. Catalytic efficiency and activation energy did not change remarkably following reaction of the enzyme with the both carboxylic anhydrides. Consequently, improvement in the stability of HRP depends on not only the type of modifier but also denaturing condition.