화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.2, 341-349, April, 1996
3차 아민계 쇄연장제를 이용한 폴리우레탄 수지의 합성과 기계적, 염색 특성
Synthesis and Mechanical, Dyeable Properties of Polyurethane with the Chain Extender Containing Tertiary Amine
초록
폴리우레탄 수지의 염색성을 향상시키기 위하여 염착좌석을 갖는 저분자량의 디올류를 쇄연장제로 활용하였다. 쇄연장제와 폴리올의 종류를 변화시키고, 또한 하드세그멘트 (HS)/소프트세그멘트 (SS) 비율을 변화시키면서 폴리우레탄 수지를 합성하였다. HS/SS가 1.4이고, dimethylolpropionic acld(DMPA), N-butyldiethanolamine(BDEA)를 염착좌석용 쇄연장제(DCE)로 활용한 경우 반응의 불균일성으로 인하여 기계적 물성이 좋지 못하였으며, 특히 에스테르계 폴리온인 poly(butylene/ethylene adipate) glycol(PBEAG)로 합성한 경우 내가수분해성이 현저히 저하되었다. 그러나 DCE로 N-methyldiethanol amine(MDEA)를 사용하고 HS/SS츨 1.3으로 조절한 경우 기계적 물성과 염색성이 향상되었으며, MDEA를 선형 쇄연장제(CE)인 1,4-butanediol(1,4-BD)과 에테르형 폴리올인 poly[oxyteramethylene] glycol(PTMG)과 반응시킨 경우 기계적 물성과 내가수분해성이 현저하게 향상되었다. 특히 분자설계적 측면에서 DCE를 HS와 SS내의 배분과 1,6-hexanediol(1,6-HD) 및 neopentylglycol(NPG)과의 공쇄연장으로 초기탄성률, 인장강도, 신장률을 제어 할 수 있음을 알 수 있다.
To improve the dyeability of polyurethane (PU) resin, low molecular weight diols containing dye site in the molecular structure was added as a chain-extender. PU resin were synthesized with the variations in the chain extender, polyol type, and hard segment/soft segment (HS/SS) ratio. When HS/SS ratio is 1.4 and dimethylolpropionic acid(DMPA) or N-butyldiethanolamine (BDEA) was used as a chain extender, because of heterogeneity of reaction mechanical properties were diminished. But when N-methyldiethanolamine (MDEA) was used as a DCE, and HS/SS ratio lowed to 1.3, mechanical properties and dyeability improved. In particular, when linear type 1,4-BD was formulated with MDEA, hydrolysis resistance and mechanical properties of PTMG type PU was improved. And initial elasticity, tensile strength and elongation could be controlled by the variation of HS/SS ratio, DCE mixing ratio of 1,6-HD or NPG.
  1. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  2. McClellan JM, Rubber Age, 100, 66 (1967)
  3. Dieterich D, Keberle W, J. Oil Col. Chem. Assoc., 53, 363 (1970)
  4. Park DW, Lee YK, Kim SC, Polym.(Korea), 6(2), 127 (1982)
  5. Yoshikawa M, Yukoshi T, Sanui K, Ogata N, J. Polym. Sci. C: Polym. Lett., 22, 473 (1984)
  6. Yoshikawa M, Yukoshi T, Sanui K, Ogata N, J. Polym. Sci. A: Polym. Chem., 22, 2159 (1984)
  7. Oshikawa M, Ukoshi T, Gata N, Polym. J., 8, 447 (1986) 
  8. Carothers WH, VanNatta FJ, J. Am. Chem. Soc., 52, 314 (1930) 
  9. Sarel S, Pororyies LA, J. Am. Chem. Soc., 80, 4596 (1958) 
  10. Hill JW, Carothers WH, J. Am. Chem. Soc., 55, 5031 (1933) 
  11. Harries RF, J. Appl. Polym. Sci., 37, 183 (1989) 
  12. "32nd An. Polyurethane Tech. Mark. Conf.," Oct., 395 (1989)
  13. Japan Patent, 54-130669
  14. Japan Patent, 55-132779
  15. Japan Patent, 57-143318
  16. Japan Patent, 59-6210
  17. Japan Patent, 44-16386
  18. Japan Patent, 46-18501
  19. Japan Patent, 39-23097
  20. Japan Patent, 64-66223
  21. U.S. Patent, 3,763,058, Oct. 2 (1973)
  22. Kumarand CS, Randjadurai S, Leather Sci., 32, 231 (1985)
  23. Japan Patent, 54-100455
  24. Japan Patent, 49-99193
  25. Japan Patent, 50-107093
  26. Japan Patent, 50-17520
  27. Japan Patent, 63-112770
  28. Japan Patent, 51-80391
  29. Japan Patent, 51-80392
  30. Japan Patent, 53-16796
  31. Japan Patent, 50-107093
  32. Japan Patent, 41-11651
  33. Japan Patent, 60-52678
  34. Japan Patent, 54-1030699
  35. Perrin DD, "Purification of Lab. Chem.," 3rd Pergamon Press (1989)
  36. Clark DT, Dilks A, J. Polym. Sci. A: Polym. Chem., 17, 957 (1979)
  37. Lee SW, Oh BK, Lee YM, Noh ST, Kim KY, J. Korean Ind. Eng. Chem., 1(1), 52 (1990)
  38. Wang CB, Cooper SL, Macromolecules, 16, 775 (1983) 
  39. Ahn TO, Jung SU, Jeong HM, Lee SW, J. Appl. Polym. Sci., 51(1), 43 (1994)