화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.2, 393-400, April, 1996
전도성 고분자 복합체 제조를 위한 신합성 연구(I):다공성정도가 전도성 고분자 복합체의 전도도에 미치는 영향
Process for the Preparation of Conducting Polymer Composites ( I ) : Effect of the Porosity on the Conductivity
초록
Seed 유화 중합법과 용매 추출법을 이용하여 전도성 고분자 복합체를 위한 다공성 입자를 제조하였다. 건조된 다공성 입자를 모체 고분자로 사용하여 dopant로 사용하는 FeCl3를 methanol에 녹여 흡수시킨 뒤에 건조시키고, 이를 다시 pyrrole를 녹인 ethyl ether 용액으로 중합하여 용액을 증발시킴으로서 전도성 고분자 복합체를 합성하였다. 이때, 모체 고분자로 사용된 비다공성 입자와 다공성 입자의 전도도를 비교하였다. 실험결과, 전도성 복합체의 전도도는 비다공성 입자보다는 다공성 입자를 사용하여 제조한 복합체가 전도성 중합체가 입자의 표면뿐만 아니라 pore안에서도 용이하게 형성되어 더 우수한 전도도를 나타내었다.
The conducting polymer composites were prepared by imbibing the porous particle with an FeCl3 oxidant solution, drying the imbibed porous particle, and imbibing again with pyrrole solution for polymerization to take place in the pore. The conductivity of the porous composite particles, was higher than that of nonporous particles. Also, the conductivity of composite was increased with increasing specific surface area and pore specific volume of the host porous particles since the degree of formation of conducting polymer in the pore increased.
  1. Candau F, Ottewill RH, "An Introduction to Polymer Colloids," Kluwer Academic Publishers, Dordrecht, The Natherlands, 1 (1990)
  2. Kanatzidis MG, Chem. Eng. News, Dec.(3), 36 (1990)
  3. Alcacer L, "Conducting Polymers: Special Applications," D. Reidal, N.Y. (1987)
  4. Armes SP, Vincent B, J. Chem. Soc.-Chem. Commun., 288 (1987)
  5. Armes SP, Aldissi M, J. Colloid Interface Sci., 141, 1 (1991) 
  6. Armes SP, Gottesfeld S, Polymer, 32, 13 (1991)
  7. Cotts DB, Reyes Z, "Electrically Conductive Organic Polymers for Advanced Applications," Noyes (1986)
  8. Linford RG, "Electrochemical Science and Technology of Polymers-1," Elsevier, N.Y. (1987)
  9. Francoise candau, "Scientific Methods for the Study of Polymer Colloids and Their Application," p. 486, Kluwer Academic Publishers (1988)
  10. Beoman M, Armes SP, Colloid Polym. Sci., 271, 70 (1993) 
  11. Beadle P, Armes SP, Macromolecules, 25, 2526 (1992) 
  12. Merkel MP, "Morphology of Core/Shell Latexes and Thier Mechanical Properties," Ph.D. Thesis, Lehigh Univ. (1986)
  13. Okubo M, Shiozaki M, Colloid Polym. Sci., 222, 222 (1991) 
  14. Cheng CM, Micale FJ, J. Colloid Interface Sci., 222, 2 (1992)
  15. Digir ML, Bhattacharyyn SN, Polymer, 35, 2 (1991)
  16. Rukenstein E, Park JS, J. Appl. Polym. Sci., 42, 925 (1991) 
  17. Rukenstein E, Chen JH, J. Appl. Polym. Sci., 43, 1209 (1991) 
  18. El-Aasser MS, "Advances in Emulsion Polymerization and Latex Technology," Lehigh Univ. (1992)
  19. Cheng CM, Micale FJ, J. Polym. Sci. A: Polym. Chem., 30, 235 (1992) 
  20. Cheng CM, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 30, 245 (1992) 
  21. Montgomery HC, J. Appl. Polym. Sci., 43, 2971 (1971)
  22. Logan BF, J. Appl. Polym. Sci., 42, 2975 (1971)
  23. Schimmel, Th., et al., "Conjugated Polymers," Ed. by Bredas, J.L., p. 53, Kluwer Academic Publishers (1991)
  24. Salaneck WR, "Conjugated Polymers and Related Materials," Oxford University Press (1991)
  25. Chance RR, "Handbook of Conducting Polymers," Ed. by Skotheim, T.J., p. 825, Marcel Dekker, N.Y. (1986)