화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.3, 473-480, June, 1996
정전위법에 의한 n-PFOSF 합성
Electrosynthesis of n-PFOSF with Potential Operation
초록
불소계 계면활성제 및 정밀화학제품의 precursor로 널리 쓰이는 n-perfluorooctanesulfonyl fluoride(n-PFOSF)를 전해불소화 반응으로 제조하는 과정에서 전극 및 반응물의 분극특성의 조사와 불소발생 전위를 측정하였다. 그리고 회분식 전해반응기를 사용하여 정전위법으로 전해반응을 실시하고 반응 종료후 전극과 생성물을 GC, GC/MS, IR 등으로 분석하여 반응과정에 대한 기초자료를 얻으려 하였다. 불소기체의 생성전위는 침적전위 붕괴곡선으로 부터 약 2.8V(vs. Cu/CuF2)로 보이며 니켈불화물이 덮힌 상태의 전극에서 불소화반응이 진행된다. 회분식 반응기에서 정전위법에 의한 전해불소화 반응은 초기의 전기화학 반응과 후반의 화학반응의 두 단계로 구분된다. 생성물은 전극에 부여된 전위가 낮을수록 적게 생성되며 7V(vs. Cu/CF2) 이상 반응물의 무게비로 약 100% 정도를 유지하며 일정해지며 생성물의 분포도 7V(vs. Cu/CuF2) 이상에서 부터 PFOSF의 생성율이 일정해진다.
Synthesis of n-perfluorooctanesulfonyl fluoride(n-PFOSF), which is valuable precursor perfluoro-chemicals, was studied by electrochemical fluorination(ECF). Of prime concern was to investigate the cyclic voltamograms of Ni electrode in anhydrous hydrogen fluoride(AHF) with and without the reactants and to measure fluorine evolution potential. In a batch cell, chronoampherometric electrolysis and various chemical analysis such as GC, GC/MS and IR were used to understand the amphere change of electrode and the reaction paths. Fluorine equilibrium potential was found to be about 2.8V( vs. Cu/CuF2) from the cyclic voltammograms and decay curves of anode potential in AHF. In batch processes, the ECF proceeded in two distinguished steps. The first step proceeded electrochemically and the second one chemically. Under 7V(vs. Cu/CuF2), amount of crude products was proportional to the applied anode potential. Above 7V(vs. Cu/CuF2), it had a hundred percentage with weight ratio of reactants and productivity of PFOSF was almost constant.
  1. Simons JH, Fluorine Chemistry, 1, Academic Press, New York (1950)
  2. Stacey M, Tatlow JC, Sharpe AG, Advances in Fluorine Chemistry, 1, Butterworths, London (1960)
  3. Musgrave WKR, Adv. Fluorine Chem., 1, 1 (1960)
  4. Sharp DWA, Tatlow JC, J. Fluor. Chem., 33, 1 (1986) 
  5. Hackerman N, Snavely ES, Fiel LD, Electrochim. Acta, 12, 535 (1967) 
  6. Pourbaix M, "Atlas Equilibrium Electrochem," Gauthier-Villars, Paris (1963)
  7. Koerber GG, Devries T, J. Am. Chem. Soc., 74, 7004 (1950)
  8. Rogers HH, Evans S, Johnson JH, J. Electrochem. Soc., 116, 601 (1969)
  9. Burrows B, Jasinski R, J. Electrochem. Soc., 115, 348 (1968)
  10. Hackerman N, Snavely ES, Fiel LD, Corrosion Sci., 7, 39 (1967) 
  11. Latimer W, J. Am. Chem. Soc., 48, 2868 (1926) 
  12. Fredenhagen HK, Krefft O, Z. Elektrochem., 35, 670 (1929)
  13. Burdon J, "Advances in Fluorine Chemistry," 1, 129 (1960)
  14. Gambaretto GP, Napoli M, Conte L, Scipioni A, Armelli R, J. Fluor. Chem., 27, 149 (1985) 
  15. Rozhkov IN, Russ. Chem. Rev., 45, 615 (1976) 
  16. Burdon J, Parson IV, Tatlow JC, Tetrahedron, 28, 43 (1972) 
  17. Meinert H, Facker R, Mader J, Reuter P, Rohlker W, J. Fluor. Chem., 51, 53 (1991) 
  18. Donohue JA, Zletz A, Flannery RJ, J. Electrochem. Soc., 115, 1042 (1968)
  19. Hollitzer E, Satori P, J. Fluor. Chem., 35, 329 (1987)