Applied Energy, Vol.101, 253-260, 2013
A mathematical model to develop a Scheffler-type solar concentrator coupled with a Stirling engine
This study develops and applies a new mathematical model for estimating the intercept factor of a Scheffler-type solar concentrator (STSC) based on the geometric and optical behaviour of the concentrator in Cartesian coordinates, and the incorporation of a thermal model of the receptor is performed using numerical examinations to determine the technical feasibility of attaching the STSC to a 3 kWe Stirling engine. A numerical validation of the mathematical model is determined based on the experimental results reported for the WGA500 concentrator and the CNRS-PROMES system receiver. The numerical results allow for the design of the STSC and a comparison with a parabolic dish that provides the same thermal demand. Our findings show that the highest concentration was obtained with an edge angle of 450, which was observed in the parabolic dish as well, but the STSC receiver shows a 7% increase in the thermal efficiency compared with the efficiency of the parabolic dish receiver. Finally, the STSC is appropriate for regions where the solar height allows for a reduction of convective thermal loss. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Solar energy;Stirling engine;Intercept factor;Parabolic dish;Scheffler concentrator;Mathematical model