화학공학소재연구정보센터
Applied Energy, Vol.102, 794-802, 2013
Optimal power flow and PGU capacity of CCHP systems using a matrix modeling approach
Performance of the combined cooling, heating and power (CCHP) systems depends on the system structure, power flow strategy and the choice of facility capacity. This paper presents a matrix modeling approach to optimize the CCHP system. Modeled in a matrix form, the CCHP system can be viewed as an input-output model. Energy conversion and flow from the system input to the output is modeled by a conversion matrix including the dispatch factors and components efficiencies. By designing the objective function and determining the constraints, the optimization problem of minimizing the evaluation criteria function is solved. Furthermore, the size of the power generation unit (PGU) is also optimized to achieve the optimal performance of the CCHP system. An illustrative case study is conducted to present the effectiveness and economic efficiency of the proposed optimal power flow and operation strategy. (c) 2012 Elsevier Ltd. All rights reserved.