Applied Energy, Vol.113, 1293-1300, 2014
Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system
A large-diameter aluminum-alloy finned-tube absorbent bed collector was designed and optimized by enhancing the heat and mass transfer in the collector. The collection efficiency of the adsorbent bed collector was between 31.64% and 42.7%, and the temperature distribution in the absorbent bed was relatively uniform, beneficial to adsorption/desorption of the adsorbate in the absorbent bed. A solar-powered solid adsorption refrigeration system with the finned-tube absorbent bed collector was built. Some experiments corresponding to the adsorption/desorption process with and without a valve control were conducted in four typical weather conditions: sunny with clear sky, sunny with partly cloudy sky, cloudy sky and overcast sky. Activated carbon-methanol was utilized as the working pair for adsorption refrigeration in the experiments. The experiments achieved the maximum COP of 0.122 and the maximum daily ice-making of 6.5 kg. Under the weather conditions of sunny with clear sky, sunny with partly cloudy sky, and cloudy sky, ice-making phenomenon were observed. Even in the overcast-sky weather condition, the cooling efficiency of the system still reached 0.039 when the total solar radiation was 11.51 MJ. The cooling efficiency of the solar-powered adsorption refrigeration system with a valve control in the adsorption/desorption process was significantly higher than that without a valve control. (C) 2013 Elsevier Ltd. All rights reserved.