화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.98, No.13, 6015-6037, 2014
Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure
Grape marc used for the production of distilled beverages undergoes prolonged storage which allows alcoholic fermentation to occur. Harsh conditions including low pH, limited oxygen and nutrients, temperature fluctuations, and high ethanol concentrations imposed by that environment create a strong selective pressure on microorganisms. A detailed characterization of the bacterial community during two time points of the fermentation process was performed using high-throughput sequencing of the V3-V6 16S rDNA hypervariable regions. The results revealed a marked reduction in the number of bacterial species after 30 days of incubation and made it possible to identify those species that are able to grow in that extreme environment. The genome sequence of Lactobacillus fabifermentans, one of the dominant species identified, was then analyzed using shotgun sequencing and comparative genomics. The results revealed that it is one of the largest genomes among the Lactobacillus sequenced and is characterized by a large number of genes involved in carbohydrate utilization and in the regulation of gene expression. The genome was shaped through a large number of gene duplication events, while lateral gene transfer contributed to a lesser extent with respect to other Lactobacillus species. According to genomic analysis, its carbohydrate utilization pattern and ability to form biofilm are the main genetic traits linked to the adaptation the species underwent permitting it to grow in fermenting grape marc.