Applied Microbiology and Biotechnology, Vol.98, No.13, 6061-6071, 2014
Glucose kinases from Streptomyces peucetius var. caesius
Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX((4))SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins.