화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.4, 743-749, August, 1996
고밀집 섬유 집합체에 의해 유도된 모세관 현상을 이용한 정적 액-액접촉장치의 개발과 그 특성 연구
A Study of the Development of Liquid-liquid Static Contactor Using Capillary Phenomena Induced by Highly Packed Fiber Bundle and its Characteristics
초록
본 연구에서는 고밀집 섬유 다발체 내에 수용상과 유기상을 동시에 주입시켜 나타나는 모세관 현상을 이용하여 최소 공간에서 최대한의 물질 전달 면적을 갖게 한 정적 액-액 접촉 장치가 개발되었다. 이 장치의 특성과 안정성을 평가하기 위해 TBP와 우라닐 이온을 함유한 질산계의 연속 추출 실험이 수행되었으며, 추출 성능은 동일 상비 조건에서 수행된 회분식 성능과 동일하였다. 초기 수용액에 대한 추출 수율을 증가 시키기 위해서는 일정한 수용액 유속에서 유기상의 유속 증가가 필요하였고, 같은 상비 조건의 회분식의 추출수율을 갖기 위해서는 수용액이 장치 내에서 일정한 체류 시간을 유지해야함을 알 수 있었고 본 추출계에서는 약 1.9분이 필요함을 알 수 있었다. 본 연구에서 개발된 고 밀집 섬유체 접촉기는 안정성과 재현성이 뛰어 났으며, 일반 물질 분리용 뿐만 아니라, 액-액계면 넓고 안정되어 있어 용매 추출 속도론 해석에도 사용될 수 있음을 확인할 수 있었다.
A new static contractor using capillary phenomena induced by a highly packed fiber bundle was developed for the solvent extraction. When two immiscible phases being cocurrently and forcedly fed into the packed fiber bundle, the contactor brings about a very large liquid-liquid contact area for mass transfer within a small definite space without any turbulence and drop phenomena. In order to test the characteristics and stability of the static contractor system, continuous extraction experiments of TBP-uranyl ion-nitric acid system were done and compared with the batch extraction experiment of the same chemical system. The performance of the static contractor were the same as that of the ideal batch extractor with the same extraction condition. For the increase of the extraction yield by the contactor, the increase of organic flow rate was required at a fixed aqueous flow rate, and a certain residence time of the aqueous phase flow within the contactor system had to be maintained to meet the performance of the batch system of the same phase ratio. The residence time in the case of TBP-uranyl ion-nitric acid system was about 1.9 minutes. This system was confirmed to be effective and stable enough for purposes of the kinetic study of solvent extraction as well as the mutual separation and purification of ordinary materials because of good reproducibility and the stable and large static liquid-liquid contact area.
  1. Lo TC, Baird MH, Hanson C, "Handbook of Solvent Extraction," Hohn Wiley & Sons, N.Y. (1983)
  2. Rydberg L, Musikas C, Choppin GR, "Principles and Practices of Solvent Extraction," Marcel Dekker, Inc., N.Y. (1992)
  3. Kertes AS, Marcus Y, "Solvent Extraction Research," Wiley-Interscience, N.Y. (1969)
  4. Benedit M, Pigford TH, Levi HW, "Nuclear Chemical Engineering," Second Ed., McGraw-Hill Book Co. (1981)
  5. Scuffham JB, Chem. Eng., July, 328 (1981)
  6. Borrekk T, Chem. Eng. Sci., 29, 1315 (1974) 
  7. Ingham J, Bouren JR, Mogli A, "Proceedings of the International Solvent Extraction Conference 1974," vol. 2, 1299, Society of Chemical Industry, London (1974)
  8. Weiss S, Wurfel R, Chem. Tech., 27, 442 (1975)
  9. Rydberg J, Acta Chem. Scand., 23, 647 (1969)
  10. Lilijenzin JO, J. Inorg. Nucl. Chem., 32, 1357 (1970) 
  11. Sege G, Woodfield FW, Chem. Eng. Prog., 50, 396 (1954)
  12. Bell RL, Badd AL, Ind. Eng. Chem. Process Des. Dev., 8, 392 (1969) 
  13. Kmosawa I, Chem. Eng. Sci., 33, 541 (1978) 
  14. Eckert JS, Hydrocarb. Process., 55, 117 (1976)
  15. Chen SJ, MacDonald AR, Chem. Eng., 70, 105 (1973)
  16. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 7(2), 228 (1996)
  17. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Electrochem. Soc., to be printed (1996)
  18. Schulz WW, Navratil JD, Talbot AE, "Science and Technology of Tributyl Phosphate," Vol. I, Vol. III, CRC Press, Inc., Florida (1984)