화학공학소재연구정보센터
Applied Surface Science, Vol.265, 363-368, 2013
Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air
The ZnO nanorod arrays were synthesized via a simple hydrothermal process followed by annealing in vacuum and air respectively at different temperature. The wettability of samples was controlled by adjusting the annealing atmosphere and temperature. To investigate the mechanism of wettability alteration, the chemical composition and surface morphology of nanorod arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM), respectively. Increasing oxygen vacancy concentration by increasing annealing temperature in vacuum resulted in a great change of surface morphology, which played the major role in wettability change. Under annealing in air, oxygen vacancy concentration reduced and the surface morphology of nanorod arrays showed little change with increasing annealing temperature. The wettability alteration is ascribed to the O adatom on the nanorods surface. (C) 2012 Elsevier B.V. All rights reserved.