화학공학소재연구정보센터
Applied Surface Science, Vol.266, 375-379, 2013
Superparamagnetic iron oxide nanoparticles prepared by using an improved polyol method
Superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of iron (III) acetylacetonate (Fe(acac)(3)) in PEG containing poly(vinyl pyrrolidone) (PVP) or poly(ethylene imine) (PEI). The morphologies and phase compositions of the nanoparticles were determined by transmission electron microscopy and X-ray diffraction, respectively. The surface coating of the nanoparticles was recognized using Fourier transform infrared spectroscopy and the presence of the surface coating was confirmed by Thermogravimetric analyses. Magnetic properties were measured using superconducting quantum interference device. The zeta potentials and hydrodynamic sizes of the nanoparticles were determined using nano-particle and zeta potential analyzer. The superparamagnetic iron oxide nanoparticles with sizes from 4.1 nm to 14.9 nm were prepared in the present work, which could be tuned by varying factors such as the reaction temperature, the reaction time, and the PVP or PEI contents. The superparamagnetic nanoparticles were jointly coated with PEG/PVP or PEG/PEI. With hydrodynamic sizes smaller than 40 nm and neutral or positive zeta potentials these superparamagnetic iron oxide nanoparticles exhibited higher dispersion stability in deionized water and in phosphate buffered saline as compared with the superparamagnetic iron oxide nanoparticles coated with PEG alone. This work demonstrates that superparamagnetic iron oxide nanoparticles with modulated properties can be prepared simply by using the improved polyol method. (C) 2012 Elsevier B.V. All rights reserved.