Applied Surface Science, Vol.270, 561-571, 2013
Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites
A new organized hexagonal boron nitride (OhBN) with significantly increased amount of amine groups was synthesized, and characterized by Fourier Transform Infrared (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG) analysis, UV-vis Transmittance Spectra, Transmission Electron Microscope (TEM) and the potentiometric titration. The content of amine groups for OhBN is about 5 times of that for original hexagonal boron nitride (hBN). Based on the preparation of OhBN, new composites consisting of OhBN and bismaleimide (BD) resin were developed, which show greatly improved integrated performance (including dynamic mechanical, dielectric and thermal properties) compared with BD resin and the hBN/BD composites. In the case of the OhBN/BD composite with 15 wt% OhBN, its storage modulus, dielectric loss, thermal conductivity and coefficient of thermal expansion are about 1.2, 0.56, 1.11 and 0.92 times of the corresponding values of hBN/BD composite, respectively; moreover, the glass transition temperature of the former is 15 degrees C higher than that of the latter. These interesting results suggest that the integrated performance of the composites is closely related to the surface nature of the fillers because the change in the surface nature not only varies the chemical structure, free volume and crosslinking density of the composite, but also determines the interfacial nature between inorganic fillers and the resin matrix. This investigation demonstrates that the method proposed herein provides a new approach to prepare organized inorganic fillers as well as corresponding composites with controlled structure and expected performances for cutting-edge industries. (c) 2013 Elsevier B.V. All rights reserved.
Keywords:Hexagonal boron nitride;Bismaleimide;Interface;Dynamic mechanical property;Dielectric property