화학공학소재연구정보센터
Applied Surface Science, Vol.274, 27-32, 2013
Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation
One-dimensional nanomaterial superlattices are fundamental components in plasmonics, nanophotonics, and nanoelectronics. Bottom-up techniques such as vapour-liquid-solid (VLS) and chemosynthesis have been used to fabricate the structure but are nonoptimal for controlling alignment and size. Here we report the fabrication of gold nanowhisker superlattice, based on a novel mechanism termed solid-liquid-solid (SLS). An interfering femtosecond laser pulse induces fluid flows of nanosize gold, which is followed by droplets pinching off from them and freezing of a free-standing nanowhisker super-lattice fixed on a substrate. The shape is defined by liquid motion and not by crystallographic growth although its structure is polycrystalline. The smallest curvature radius of its vertex was 3.4 nm, which is one-half of the smallest nanorods fabricated by chemosynthesis. SLS process is a superior alternative to sequential bottom-up processes involving catalyst fabrication, bottom-up synthesis, purification, alignment, stabilization, and preservation. (C) 2013 Elsevier B.V. All rights reserved.