Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.5, 913-924, October, 1996
네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응
Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts
초록
본 연구에서는 소량의 네오디윰이 첨가된 니켈 촉매에 대하여 티오펜 탈황 반응을 조사하였으며, 촉매 제조 방법에 따라, 공침법으로 제조된 비담지 NdNi 촉매, 비담지 금속간 화합물 NdNi5 촉매, 활성탄에 담지된 NdNi 촉매 등이 연구되었다. 공침법으로 제조된 비담지 NdNi 촉매의 경우 소량의 네오디윰이 첨가되면 티오펜 탈황 반응성이 급격히 증가하여 니켈 촉매에서 네오디윰의 역할이 아주 큼을 알 수 있다. 비담지 금속간 화합물 NdNi5 촉매는 소성, 황화 처리의 과정을 거치면서 금속간 화합물이 파괴되고 산화물, 황화물로 각각 변하였다. 비담지 촉매의 경우 티오펜 탈황 반응성은 촉매의 표면적으로 설명이 가능하고 네오디윰의 역할은 니켈 촉매의 표면적을 높게 유지시키는 구조 촉진제(structural promoter)로 작용한다. 니켈의 분산도가 다른, 금속간 화합물 NdNi5 촉매, 공침법으로 제조된 NdNi 촉매, 활성탄에 담지 된 NdNi 촉매 순으로 니켈을 기준으로 할 때 티오펜 탈황 반응활성이 각각 10배씩 증가하였다.
In this study HDS(hydrodesulfurization) of thiophene was researched over nickel catalysts added with small amounts of neodymium which were prepared by different methods such as unsupported coprepricipitated NdNi catalysts, unsupported intermetallic NdNi5 catalysts, and carbon supported NdNi catalyst. The HDS activity was remarkably increased when a small amounts of neodymium was added to unsupported coprecipitated Ni catalysts. Thus it was known that the role of Nd is important in HDS of thiophene of Ni catalysts. For the case of unsupported intermetallic NdNi5, the intermetallic crystallinity was destroyed to oxide and sulfide after calcination and presulfidation respectively. The HDS activity of thiophene can be explained by surface area of unsupported catalysts. And Nd acts like as structural promoter keeping the high surface area of unsupported catalysts. The HDS activity was increased by each ten times based on 1 gr. of nickel in the order of unsupported intermetallic NdNi5, unsupported coprecipitated NdNi, and carbon supported NdNi catalysts according to different preparation method of catalysts.
- Minachev KM, Fifth Int. Cong. Catalysis, 219 (1973)
- Coon VT, Takesita T, J. Phys. Chem., 80(17), 1878 (1976)
- Takesita T, Wallace WE, Craig RS, J. Catal., 44, 236 (1976)
- Soga K, Imamura H, Ikeda S, J. Phys. Chem., 81, 1762 (1977)
- Imamura H, Wallacec WE, J. Phys. Chem., 3(25), 3261 (1979)
- Imamura H, Wallace WE, J. Catal., 65, 127 (1980)
- Shirotsuka T, Onoe K, Yokoyama A, J. Chem. Eng. Jpn., 19(4), 347 (1986)
- Siegmann HC, Schlapbach L, Brunel CR, Am. Phys. Soc., 40(14), 972 (1978)
- Imamura H, Ohmura A, Tamura T, Tsuchuya S, J. Less-Commonmetals, 94, 107 (1983)
- Imamura H, Ohmura A, Haku E, Tsuchiya S, J. Catal., 96, 139 (1985)
- Wallace WE, France J, Shamsi A, Rare Earths Mod. Sci. Technol., 65, 127 (1980)
- Wu X, Zhang J, Chang L, Stud. Surf. Sci. Catal., 34, 209 (1987)
- Robert PL, Angevine PJ, Chester AW, Kirke GW, U.S. Patent, 4,810,361
- Kolts JH, Bertus BJ, Coombs DM, U.S. Patent, 4,670,134
- Barbaux Y, Marcq JP, Diaz H, Pinabiau M, European Patent, 0208405 A1
- Bonnelle JP, Pinabiau M, Marcq JP, European Patent, 0273575 A2
- Sterte J, Otterstedt JE, Appl. Catal., 38, 131 (1988)
- Oh SH, J. Catal., 124, 477 (1990)
- 임선기, 촉매, 7(2), 28 (1991)
- 문영환, 화학공학과 박사학위논문, 한국과학기술원 (1993)
- Chianelli RR, Catal. Rev.-Sci. Eng., 26(3-4), 361 (1984)
- Nitadory T, Ichiki T, Misno M, Bull. Chem. Soc. Jpn., 61, 621 (1988)