화학공학소재연구정보센터
Applied Surface Science, Vol.293, 116-123, 2014
Role of nanoparticles in phase separation and final morphology of superhydrophobic polypropylene/zinc oxide nanocomposite surfaces
In this work, phase separation process was revisited to study the effect of nanoparticles in acceleration of phase separation and formation of hierarchical structures. Superhydrophobic surfaces were prepared using polypropylene (PP) and the corresponding nanocomposites containing zinc oxide (ZnO) nanoparticles through a typical solution casting method. The wettability and morphological behavior of the surfaces were investigated via water contact angle (WCA) measurements and scanning electron microscopy (SEM), respectively. It was found that upon introduction of ZnO nanoparticles into the pure PP, the obtained surfaces have become superhydrophobic with WCAs above 150 and sliding angles below 10 degrees. Calcination of ZnO nanoparticles was exploited to explicate the unexpected significant loss in superhydrophobicity of the sample loaded with high ZnO content. Crystallization behavior of the samples were also investigated via differential scanning calorimetry and correlated to superhydrophobicity of the surfaces. X-ray photoelectron and Fourier transform infrared spectroscopies were also utilized to further characterize the samples. An attempt was also made to present a more clear mechanism for formation of hierarchical structures which are responsible for superhydrophobicity. Likewise, the so far proposed mechanisms for formation of micro/nano roughness on the superhydrophobic surfaces were reviewed as well. (C) 2013 Elsevier B.V. All rights