Applied Surface Science, Vol.298, 130-136, 2014
Magneto-fluorescent hybrid of dye and SPION with ordered and radially distributed porous structures
We have reported the development of a silica based magneto-fluorescent hybrid of a newly synthesized dye and superparamagnetic iron oxide nanoparticles with ordered and radially distributed porous structure. The dye is synthesized by a novel yet simple synthetic approach based on Michael addition between dimer of glutaraldehyde and oleylamine molecule. The surfactant used for phase transformation of the dye from organic to aqueous phase, also acts as a structure directing agent for the porous structure evolution of the hybrid with radial distribution. The evolution of the radially distributed pores in the hybrids can be attributed to the formation of rod-like micelles containing nanoparticles, for concentration of micelles greater than critical micelle concentration. A novel water extraction method is applied to remove the surfactants resulting in the characteristic porous structure of the hybrid. Adsorption isotherm analysis confirms the porous nature of the hybrids with pore diameter similar to 2.4 nm. A distinct modification in optical and magnetic property is observed due to interaction of the dye and SPION within the silica matrix. The integration of multiple structural components in the so developed hybrid nanosystem results into a potential agent for multifunctional biomedical application. (C) 2014 Elsevier B.V. All rights reserved.