화학공학소재연구정보센터
Applied Surface Science, Vol.311, 292-299, 2014
Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization
The ultimate goal for surface modifications in bone implants is to achieve biologically active surface able to control and trigger specific tissue response. In this study was evaluated the effects of organic compound, derived from extracellular matrix, involved in tissue mineralization. Alkaline phosphatase (ALP) plays a fundamental role in bone mineralization concurrently with collagen, the main organic components of bones. Electrospray deposition (ESD) was used to coat titanium disks with ALP and collagen at room temperature. To verify the synergistic role of ALP and collagen different conformations of coatings (mixed and layered) were obtained and their mineralization capacity was tested in vitro. The mineralization tests indicated the fundamental role of collagen to increase ALP coating retention. Analyses indicated that the coating conformation has a role; in fact the mixed group showed improved ALP retention, enzymatic activity and unique mineralized surface morphology. ESD demonstrated to be a successful method to deposit organic molecules preserving their properties as indicated by the in vitro results. These findings proved the synergistic effect of ALP and collagen in inducing mineralization offering an intriguing coating constituent for medical device that aim to trigger surface mineralization such as bone implants. (C) 2014 Elsevier B.V. All rights reserved.