Automatica, Vol.50, No.6, 1641-1648, 2014
An event-triggered approach to state estimation with multiple point- and set-valued measurements
In this work, we consider state estimation based on the information from multiple sensors that provide their measurement updates according to separate event-triggering conditions. An optimal sensor fusion problem based on the hybrid measurement information (namely, point- and set-valued measurements) is formulated and explored. We show that under a commonly-accepted Gaussian assumption, the optimal estimator depends on the conditional mean and covariance of the measurement innovations, which applies to general event-triggering schemes. For the case that each channel of the sensors has its own event-triggering condition, closed-form representations are derived for the optimal estimate and the corresponding error covariance matrix, and it is proved that the exploration of the set-valued information provided by the event-triggering sets guarantees the improvement of estimation performance. The effectiveness of the proposed event-based estimator is demonstrated by extensive Monte Carlo simulation experiments for different categories of systems and comparative simulation with the classical Kalman filter. (C) 2014 Elsevier Ltd. All rights reserved.