Biochemical and Biophysical Research Communications, Vol.445, No.1, 225-229, 2014
Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Ca(v)3.2-expressing HEK293 cells
Hydrogen sulfide (H2S), a gasotransmitter, is formed from L-cysteine by multiple enzymes including cystathionine-gamma-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Ca(v)3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Ca(v)3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Ca(v)3.2-transfected HEK293 (Ca(v)3.2-HEK293) cells. DL-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Ca(v)3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Ca(v)3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1-0.3 mM, increased T-currents in Ca(v)3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1-0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Ca(v)3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Ca(v)3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Ca(v)3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Ca(v)3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo. (C) 2014 Elsevier Inc. All rights reserved.