화학공학소재연구정보센터
Biomacromolecules, Vol.15, No.6, 2067-2078, 2014
Polysulfone Membranes Coated with Polymerized 3,4-Dihydroxy-L-phenylalanine are a Versatile and Cost-Effective Synthetic Substrate for Defined Long-Term Cultures of Human Pluripotent Stem Cells
Clinical and industrial applications of human pluripotent stem cells (hPSC) require large amounts of cells that have been expanded under defined conditions. Labor-intensive techniques and ill-defined or expensive compounds and substrates are not applicable. Here we describe a chemically defined synthetic substrate consisting of polysulfone (PSF) membranes coated with polymerized 3,4-dihydroxy-L-phenylalanine (DOPA). DOPA/PSF is inexpensive and can be easily produced at various shapes and sizes. DOPA/PSF supports long-term self-renewal of undifferentiated human embryonic (hESC) and human induced pluripotent stem cells (hiPSC) under defined conditions. Pluripotency is maintained for at least 10 passages. Adhesion of hPSC to DOPA/PSF is mainly mediated by a specific integrin heterodimer. Proliferation and gene expression patterns on DOPA/PSF and control substrates are comparable. Labor-intensive cultivation methods and use of serum or coating with proteins are not required. Together, these features make DOPA/PSF attractive for applications where large-scale expansion of human pluripotent stem cells under defined conditions is essential.