화학공학소재연구정보센터
Biotechnology Letters, Vol.36, No.2, 383-390, 2014
Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells
Nanofibrous matrices are attractive scaffolding platforms for tissue regeneration. Modification of the nanofiber surface, particularly with biological proteins, improves cellular interactions. Here, we loaded basic fibroblast growth factor (bFGF) onto mineralized nanofibers and investigated the effect on adhesion and proliferation of rat mesenchymal stem cells. bFGF loading was significantly higher on the mineralized nanofiber than on the non-mineralized one. Release of bFGF from the mineralized nanofibers was continuous over 2 weeks. Cells cultured on the bFGF-loaded nanofiber attached and proliferated in significantly higher numbers than those on the bFGF-free nanofiber. bFGF-receptor inhibition study confirmed the biological role played by the loaded bFGF. This study details the advantages of the mineralized nanofiber surface for the loading and delivery bFGF, and thus the bFGF-loaded nanofiber scaffold may be useful for tissue repair and regeneration.