화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.6, 1192-1203, December, 1996
금속 알콕사이드의 가수분해법으로 제조한 Al2O3-TiO2 복합옥사이드의 Co2+ 흡착 특성에 관한 연구
Co2+ Adsorption Characteristics of Al2O3-TiO2 Composite Oxide Prepared by Hydrolysis of Metal Alkoxide
초록
알루미늄 및 티타늄 알콕사이드의 가수분해방법을 인용하여 고온수중에 적용할 수 있는 Al2O3-TiO2 복합옥사이드형 흡착제를 제조하였다. 제조한 흡착제는 600∼1400℃의 온도로 하소되었으며, 결정전이, 열적 특성, 비표면적 등의 물성변화를 알아 보기 위하여 X선회절, 적외선분광분석, 열분석 전자현미경 관찰, BET 방법에 의한 측정 등을 수행하였다. 그리고 Autoclave를 이용한 회분식 흡착실험으로 이 흡착제들의 TiO2 함량 및 하소 온도 변화에 따르는 고온수중에서의 Co2+ 흡착 특성을 알아 보았다. 150∼250℃의 온도 범위에서 Al2O3-TiO2 흡착제의 Co2+ 흡착반응에 대한 표준 엔탈피 변화값은 TiO2 함량이 26mo1%, 43mo1%, 80mo1%에 대하여 16.5∼26.0 kJ·mol-1 범위에 있었으며, 이 흡착반응이 비가역적인 흡열반응임을 알 수 있었다. 250℃의 고온수에서 하소 온도가 600℃, TiO2 함량이 26mo1%인 흡착제의 코발트 평형흡착용량은 0.1674 meqg-1이었다.
Al2O3-TiO2 composite oxide adsorbents which could be applied in high-temperature water were prepared by hydrolysis of aluminum and titanium alkoxide. The prepared adsorbents were calcined at 600~1400 ℃ and in order to investigate the various properties - the transition of crystals, thermal properties, and specific surface area, X-ray diffractometry, thermal analysis, FT-IR, SEM and BET method were employed. And the Co(2+) adsorption characteristics of these adsorbents in high-temperature water were investigated by batch adsorption experiment in a stirred autoclave. Since the adsorption of Co(2+) on the Al2O3-TiO2 adsorbents was irreversible endothermic in the temperature range of 150~250 ℃, the standard enthalpy changes of 26, 43, and 80 mol% of TiO2 on Al2O3 were in the range of 16.5~26.0kJㆍmol(-1). The adsorbent of 26 mol% of TiO2 on Al2O3 which was calcined at 600 ℃ for 2 hours showed the adsorption amount of 0.1674meqㆍg(-1) in the high temperature water at 250 ℃.
  1. Amphlett CB, "Inorganic ion Exchangers," Elsevier Publishing, Co., Amsterdam (1964)
  2. Michael N, Fletcher WD, Bell MJ, Croucher DE, "Inorganic Ion-Exchange Materials for Waste Purification in CVTR," Westinghouse Electric Corporation Report CVNA-135 (1961)
  3. Tewari PH, Lee W, J. Colloid Interface Sci., 52, 77 (1975) 
  4. Tewari PH, Tuxworth RH, Lee W, "Specific Adsorption of Co(II) by ZrO2 and Fe3O4," Proceedings of Symposium on Oxide-Electrolyte Interfaces, J. Electrochem. Soc. (1973)
  5. Tewari PH, McIntyre NS, AIChE Symp. Ser., 71, 134 (1975)
  6. Kikuchi M, Ga E, Funabashi K, Yusa H, Uchida S, Fujita K, Nucl. Eng. Design, 53, 387 (1979) 
  7. Hata K, Kitao H, Miyazaki T, "Development of High Temperature Adsorbent," Water Chemistry of Nuclear Reactor Systems 4. BNES, London (1986)
  8. Kikuchi M, Ga E, Funabashi H, Yusa H, Radiochem. Radioanal. Lett., 33, 331 (1978)
  9. Fujita K, Yamashita H, Takeuchi S, Nakajima F, J. Inorg. Nucl. Chem., 43, 188 (1980) 
  10. Fujita K, Takechi S, Yamashita H, J. Chem. Soc. Jpn., 9, 1656 (1985)
  11. Kim KR, A Study on the Characteristics of Cobalt Adsorption on Prepared TiO2 and Fe-Ti-O Adsorbents in High Temperature water, Ph.D. Thesis, KAIST (1995)
  12. Helfferich F, "Ion Exchange," Chap. 6, McGraw-Hill, New York (1962)
  13. Tamura H, Matijevic E, Meites L, J. Colloid Interface Sci., 92, 303 (1983)