Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.1, 76-83, February, 1997
액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구
On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester
초록
열방성 액정고분자(TLCP)와 폴리(에틸렌 테레프탈레이트)를 혼합용매 중에서 블렌딩하였으며, 이들 블렌드는 capillary rheometer die를 통하여 287℃에서 섬유상 압출물로 가공되었다. 블렌드와 제조된 복합재료의 열적 성질, 기계적 성질, 모폴로지는 DSC, 편광현미경, SEM 및 인장시험에 의하여 조사되었다. 블렌드의 결정화 동력학은 등온 DSC 방법에 의하여 측정된 데이타로부터 Avrami식을 이용하여 결정화 속도 및 결정성장 메카니즘에 대한 정보를 얻었다. 블렌드내의 액정상은 가공온도조건하에서 버대상분킥나 열분해현i:1을 보이지 않았으며, 액체질소 속에서 절단된 섬유 단면의 SEM 관찰에 의하면, 섬유내 TLCP domain은 0.lpm에서 0.2Mm 정도의 크기로 분산되었고, 두 상 계면에서의 접착은 잘 되어있음을 알 수 있었다. TLCP/PET in-situ 섬유상 복합재료의 인장강도와 모듈러스는 TLCP 함량이 많을수록, draw ratio가 높을수록 증가됨을 알 수 있었다.
Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at 287℃ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with 0.1μm to 0.2μm in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.
- Jackson WJ, Kuhfuss HF, J. Polym. Sci. A: Polym. Chem., 14, 2043 (1976)
- Baird DG, J. Rheol., 23, 505 (1979)
- Kiss G, Polym. Eng. Sci., 27, 410 (1987)
- Dutta D, Fruitwala H, Kohli A, Weiss RA, Polym. Eng. Sci., 30, 1005 (1990)
- Crevecoeur G, Groeninckx G, J. Appl. Polym. Sci., 49, 839 (1994)
- Crevecoeur G, Groeninckx G, Bull. Soc. Chim. Belg., 99, 1031 (1990)
- Frayer PD, Polym. Compos., 8, 379 (1987)
- Baird DG, Ramanathan R, "Contemporary Topic in Polymer Science," 6, Bill M. Culbertson ed., 73, Plenum Press, N.Y. (1989)
- Chang JH, Jo BW, J. Appl. Polym. Sci., 60(7), 939 (1996)
- Shin BY, Chung IJ, Polym. Eng. Sci., 30, 22 (1990)
- Roviello A, Sirigu A, Macromol. Chem., 183, 895 (1982)
- Antoun S, Lenz RW, Jin JI, J. Polym. Sci. A: Polym. Chem., 19, 1901 (1981)
- Griffin AC, Havens SJ, J. Polym. Sci. B: Polym. Phys., 19, 951 (1981)
- Lenz RW, J. Polym. Sci. Polym. Symp., 72, 1 (1985)
- Ober C, Jin JI, Lenz RW, Polym. J., 14, 9 (1982)
- Avrami MJ, J. Chem. Phys., 7, 1103 (1939)
- Joseph EG, Wilkes GL, Baird DG, "Polymer Liquid Crystals," A. Blumstein Ed., 197, Plenum Press, N.Y. (1985)
- Chang JH, Lee SM, Park NJ, Jo BW, Bang MS, Polym.(Korea), 18(6), 966 (1994)
- Siegmann A, Dagan A, Kenig S, Polymer, 26, 1325 (1985)
- Joseph EG, Wilkes GL, Baird DG, Am. Chem. Soc. Div. Polym. Chem. prepr., 25, 94 (1984)
- Brizard KG, Baird DG, Polym. Eng. Sci., 27, 653 (1987)
- Heino MT, Seppala JV, Polym. Bull., 30, 353 (1993)
- Vinaogradov GV, Int. J. Polym. Mater., 9, 187 (1982)
- Ko CU, Wilkes GL, J. Polym. Sci., 37, 3063 (1989)
- Bhattacharya SK, Tandolkar A, Misra A, Mol. Cryst. Liq. Cryst., 153, 501 (1987)
- Chang JH, Jo BW, Polym. Sci. Technol., 5(3), 254 (1994)