화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.2, 172-178, April, 1997
여러가지 도판트에 의해 도핑된 전도성 폴리아닐린 LB 박막의 제조 및 전기적 성질
Preparation and Electrical Properties of Conductive Polyaniline Langmuir-Blodgett Thin Films Doped by Various Dopants
초록
폴리아닐린(PANI)-stearic acid(SA) 복합물의 단분자막이 공기-물 계면에서 형성되었으며, 계면활성제인 stearic acid는 PANI 단분자막의 형성을 증진시키는데 사용되었다. Langmuir-Blodgett(LB) 기법을 사용하여 약 1의 전이비와 Y형태를 갖는 균일한 PANI-SA의 다층막을 제조하였다. HCI 또는 I2의 도핑에 의해 10-1∼10-2S/cm의 높은 전기 전도도를 갖는 PANI-SA 복합막의 LB 필름을 얻었고, 그 값은 전형적인 PANI-HCl 착제와 비슷한 전도도를 나타냈다. 특히 I2는 전자수용체/감광체/전자공여체로 구성된 MIM 분자 device에서 고분자 전극으로 사용하는데 뛰어난 안정성을 제공해 주기 때문에 가장 적합한 도판트로 밝혀졌다. PANI-SA LB 필름의 구조와 물리적 성질은 near-ir UV, FT-IR과 Cyclic voltammetry를 통해 조사하였다.
Polyaniline(PANI)-stearic acid(SA) composite monolayer was formed at the air-water interface. The stearic acid as a surfactant was used to promote PANI monolayer formation. Uniform PANI-SA monolayer assemblies with Y type and transfer ratio of ca. 1 were fabricated using the Langmuir-Blodgett(LB) technique. The PANI-SA composite LB films with high electrical conductivity of 10-1∼10-2S/cm were obtained by doping of HCl or I2, and their conductivity revealed essentially close value as that of conventional PAHI-HCl complex. Especially, iodine is found to be the most promising dopant, since it gives a remarkable stability for the application as a polymer electrode in the MIM molecular device consisted of acceptor, sensitizer, and donor. The structure and physical properties of PANI-SA LB films were investigated through the near-ir UV, FT-IR, and Cyclic voltammetry.
  1. Genies EM, Tsintavis C, J. Electroanal. Chem., 195, 109 (1985) 
  2. Oh SY, Akagi K, Shirakawa H, Synth. Met., 32, 245 (1989) 
  3. Cai Z, Martin CR, J. Am. Chem. Soc., 111, 4138 (1989) 
  4. Geneies EM, Boyle A, Lapkowski M, Tsintavis C, Synth. Met., 36, 135 (1990)
  5. Gustafsson G, Cao Y, Trevedi GM, Klavetter F, Colaneri N, Heeger AJ, Nature, 357, 447 (1992)
  6. Dhawan SK, Trivedi DC, J. Appl. Electrochem., 22, 563 (1992) 
  7. Oh SY, Akagi K, Shirakawa H, Araya K, Macromolecules, 26, 6203 (1993) 
  8. Shirakawa H, Kadokura Y, Goto H, Oh SY, Akagi K, Araya K, Mol. Cryst. Liq. Cryst., 255, 213 (1993)
  9. Goto H, Akagi K, Shirakawa H, Oh SY, Araya K, Synth. Met., 71, 1899 (1995) 
  10. Cao Y, Smith P, Heeger AJ, Synth. Met., 48, 91 (1992) 
  11. Koh HC, Oh SY, 화학공학의 이론과 응용, 1, 1413 (1995)
  12. OH SY, Koh BC, J. Korean Ind. Eng. Chem., 6(6), 1108 (1995)
  13. Kudo K, Itadera K, Kuniyoshi S, Tanak K, Thin Solid Films, 92, 248 (1994)
  14. Roberts G, Langmuir-Blodgett Films, Plenum, New York (1990)
  15. Isoda S, Nishikawa S, Ueyama S, Hanazato Y, Kawakobo H, Maeda M, Thin Solid Films, 210, 290 (1992) 
  16. Isoda S, Ueyama S, Nishikawa S, Miyamoto M, Akiyama K, Hanazato Y, Wada O, Maeda M, Symp. Future Electron. Devices, 12, 107 (1993)
  17. Deisenhofer J, Nature, 318, 618 (1985) 
  18. Kuhn H, Molecular Electronics: Biosensors and Biocomputers(ed. by F.T. Hong), Plenum, New York (1989)
  19. Choi JW, Oh SY, Lee WH, Jung GY, Shin DM, Mol. Electron. Devices, 359 (1995)
  20. Ho SY, Jung GY, Choi JW, Lee SB, Kim HS, Lee WH, J. Ind. Eng. Chem., 2(1), 1 (1996) 
  21. Neoh KG, Pun MY, Kang ET, Tan KL, Synth. Met., 73, 209 (1995) 
  22. Roc MG, Ginder JM, Wigen PE, Epstein AJ, Angelopoulos M, MiacDiarmid AG, Phys. Rev. Lett., 6, 789 (1988)