화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.22, No.4, 474-479, 2014
Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials
Antibacterial activity of boron-doped TiO2 (B/TiO2) nano-materials under visible light irradiation and in the dark was investigated. A simple sol-gel method was used to synthesize TiO2 nano-materials. X-ray diffraction pattern of B/TiO2 nano-materials represents the diffraction peaks relating to the crystal planes of TiO2 (anatase and rutile). X-ray photoelectron spectroscopy result shows that part of boron ions incorporates into TiO2 lattice to form a possible chemical environment like Ti-O-B and the rest exist in the form of B2O3. The study on antibacterial effect of B/TiO2 nano-materials on fungal Candida albicans (ATCC10231), Gram-negative Escherichia coli (ATCC25922) and Gram-positive Staphylococcus aureus (ATCC6538) shows that the antibacterial action is more significant on Candida albicans than on Escherichia coli and Staphylococcus aureus. Under visible light irradiation, the antibacterial activity is superior to that in the dark.