화학공학소재연구정보센터
Energy & Fuels, Vol.27, No.11, 6637-6645, 2013
Suppression of Addition Reactions during Thermal Cracking Using Hydrogen and Sulfided Iron Catalyst
Due to the complexity of the vacuum residue fraction of petroleum and bitumen, a model compound was used to probe cracking and addition reactions in the liquid phase. Hydrogenation reactions were conducted in a batch microreactor at 430 degrees C, 13.9 MPa H2 for 30 min using a solution of 1,3,6,8-tetrahexylpyrene (THP) in tetralin. Sulfided iron was prepared on alpha-alumina, gamma-alumina, and glass beads as support materials. The hypothesis of this study was that addition reactions can be suppressed under hydrogenation conditions by using iron sulfide as a low-activity catalyst in the presence of hydrogen gas and a hydrogen donor solvent, by saturating olefin intermediates. The products were analyzed by high performance liquid chromatography, gas chromatography, matrix-assisted laser desorption ionization mass spectrometry, and proton nuclear magnetic resonance spectroscopy to investigate conversion and product distribution for different catalysts and without added catalyst. The results show that sulfided iron can give significant suppression of addition reactions, decreasing from 63 mol % for the noncatalytic reaction to 13 mol % under catalytic conditions, and shifting the selectivity toward cracking, without competitive hydrogenation of the aromatics. The catalysts were characterized by measuring bulk and surface composition, and by scanning electron microscopy before and after the reaction. The data show that catalyst does not have an impact on conversion; therefore, the data do not support the claim that free radicals are efficiently hydrogenated. The results confirm the presence of iron sulfide on the catalyst surface and a change in its crystalline structure from pyrite to pyrrhotite during reaction. This study shows the value of using a low-cost iron catalyst, as compared to the commercial nickel-based catalysts, as an additive to reduce the amount of coke formation in thermal cracking processes conducted in the presence of hydrogen.