Energy & Fuels, Vol.28, No.6, 4167-4176, 2014
Emission of Organically Bound Elements during the Pyrolysis and Char Oxidation of Lignites in Air and Oxyfuel Combustion Mode
This study aims to clarify the abundance of individual elements, particularly those in trace concentrations in lignites, and their emission dynamics during pyrolysis and char oxidation in both air and oxyfuel combustion modes. For this laboratory-scale study, the emission dynamics was represented by element release from the coal/char particle during thermal treatment in a drop-tube furnace. The main coal sample studied is a Victorian brown coal (VBC), which was compared with a Chinese lignite. Irrespective of elemental type, the VBC is rich in organically bound elements, which partly dissociated during the initial flash pyrolysis step. This dissociation extent varied broadly with elemental type. For element release during char oxidation, As release rates in both N-2 and CO2 bulk gases were slower than char surface consumption rate, because of internal diffusion limitations and scavenging of a portion of As by Ca/Al/Fe-bearing discrete minerals. In contrast, the release rates of Pb from the char surface were faster than the carbon consumption rate. Releases of the remaining elements were simply in linear proportion to the char consumption rate for the two lignites studied, despite their differences in properties with no observable (element release) difference between air and oxyfuel combustion mode.