화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.3, 395-402, June, 1997
실리콘배향에 따른 산화 속도 영향과 표면 Morphology
Effects on the Oxidation Rate with Silicon Orientation and Its Surface Morphology
초록
ECR 산소 플라즈마를 사용한 건식산화법에 의해 두 가지 실리콘 배향에 대하여 실리콘 산화막을 제조한 후 Deal-Grove(D-G)모델과 Wolters-Zegers-van Duynhoven (W-Z)모델에 적용하여 시간에 따르는 막 두께의 변화를 살펴보았으며 산화속도와 산화막의 표면 morphology의 상관관계를 조사하였다. 실리콘 산화막의 두께는 Si(100)과 Si(111) 모두 반응 시간이 짧은 영역에서 선형적으로 증가하였으나 반응시간이 경과함에 따라 화학반응 속도 보다 산화막을 통과하는 반응성 라디칼들의 확산이 율속단계로 작용하여 산화속도의 증가폭이 다소 둔화되었다. D-G모델과 W-Z모델에서 확산 및 반응속도는 Si(100)보다 Si(111)이 더 큰 값을 갖기 때문에 반응속도는 1.13배 더 크게 나타났으며 이들 모델은 실험 값과 잘 일치하였다. 표면 morphology는 산화 속도가 증가해도 식각현상이 일어나지 않는 실험 조건에서 산화막의 표면 조도가 일정하였으며, 기판의 위치가 하단 전자석에 근접하고 마이크로파 출력이 증가하여 식각현상이 일어나는 실험 조건에서 표면 조도는 산화속도와 관계없이 크게 나타났다.
The SiO2 films were prepared by ECR(electron cyclotron resonance) plasma diffusion method, Deal-Grove model and Wolters-Zegers-van Duynhoven model were used to estimate the oxidation rate which was correlated with surface morphology for different orientation of Si(100) and Si(111). It was seen the SiO2 thickness increased linearly with initial oxidation time. But oxidation rate slightly decrease with oxidation time. It was also shown that the oxidation process was controlled by the diffusion of the reactive species through the oxide layer rather than by the reaction rate at the oxide interface. The similar time dependency has been observed for thermal and plasma oxidation of silicon. From D-G model and W-Z model, the oxidation rate of Si(111) was 1.13 times greater than Si(100) because Si(111) had higher diffusion and reaction rate, these models more closely fits the experimental data. The SiO2 surface roughness was found to be uniform at experimental conditions without etching although oxidation rate was increased, and to be nonuniform due to etching at experimental condition with higher microwave power and closer substrate distance.
  1. Miyake K, Kimura S, Warabisako T, Sunami H, Tokuyama T, J. Vac. Sci. Technol. A, 2, 496 (1984) 
  2. Batey J, Tierney E, J. Appl. Phys., 60, 3136 (1986) 
  3. Fountain GG, Rudder RA, Hattangady SV, Markunas RJ, Lindorme PS, J. Appl. Phys., 63, 4744 (1988) 
  4. Salbert GT, Reinhard DK, Asmussen J, J. Vac. Sci. Technol. A, 8, 2919 (1990) 
  5. Eljably K, Reisman A, J. Electrochem. Soc., 138, 1071 (1991) 
  6. Ono T, Oda M, Takakashi C, Matsuo S, J. Vac. Sci. Technol. B, 4, 696 (1986) 
  7. Massoud HZ, Plummer JD, Irene EA, J. Electrochem. Soc., 132, 2685 (1985) 
  8. Vinckier C, Coeckelberghs P, Stevens G, Heyns M, Dejaegere S, J. Appl. Phys., 62, 1450 (1987) 
  9. Lee C, Graves DB, Lieberman MA, Hess DW, J. Electrochem. Soc., 141(6), 1546 (1994) 
  10. Deal BE, Grove AS, J. Appl. Phys., 36, 3770 (1965) 
  11. Tiller WA, J. Electrochem. Soc., 127, 625 (1984) 
  12. Kimura S, Murakami E, Miyake K, Warabiska T, Sunami H, Tokuyama T, J. Electrochem. Soc., 132, 1460 (1985) 
  13. Kraitchma J, J. Appl. Phys., 38, 4323 (1967) 
  14. Fehlner FP, J. Electrochem. Soc., 131, 1645 (1984) 
  15. Horiuhi H, Kamigaki Y, Hagiwara T, J. Electrochem. Soc., 125, 766 (1978) 
  16. Wolters DR, Zeger-van Duynhoven AT, J. Appl. Phys., 65, 5126 (1989) 
  17. Carl DA, Hess DW, Liberman MA, J. Vac. Sci. Technol. A, 8, 2924 (1990) 
  18. Faraone L, Harbeke G, J. Electrochem. Soc., 133, 1410 (1986) 
  19. Hahn PD, Henzler M, J. Appl. Phys., 52, 4122 (1981) 
  20. Ting W, Hwang H, Lee J, Kwong DL, Appl. Phys. Lett., 57, 2808 (1990)