화학공학소재연구정보센터
Energy Policy, Vol.65, 340-350, 2014
Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data
We focus on predicting the adoption time probabilities of photo-voltaic solar panels by households using discrete choice experiments and an innovation diffusion model. The primary objective of this research is cohesively mapping the theory of disruptive innovation into diffusion of innovations to aid policy makers by linking two critical uncertainties of new technology: (1) whether households prefer the new attributes of the new technology and how these preferences vary by market segments? and (2) when are they going to adopt (if at all)? Our study uses recent developments of discrete choice experiments and establishes a causal link between the attributes of the technology, attitudinal constructs and socio-demographics, and adoption time probabilities using the Bass diffusion model. The data was collected from Ontario, a province of Canada. The innovation diffusion model allows us to compute the cumulative probability of adoption over time per household. Technology awareness and energy cost saving have a significant effect on the adoption probability, reinforcing the need for effective education. These findings also suggest that campaigns should explain more about investment criteria, feed-in tariffs and environmental attributes. This study findings call for a need to use seeding strategies to accelerate exogenous Word-of-Mouth (WOM) for this new technology. (C) 2013 Elsevier Ltd. All rights reserved.