화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.59, No.3, 775-781, 2014
Constrained Consensus in Unbalanced Networks With Communication Delays
In this note, a constrained consensus problem is studied for multi-agent systems in unbalanced networks in the presence of communication delays. Here each agent needs to lie in a closed convex constraint set while reaching a consensus. The communication graphs are directed, dynamically changing, and not necessarily balanced and only the union of the graphs is assumed to be strongly connected among each time interval of a certain bounded length. The analysis is performed based on an undelayed equivalent system that is composed of a linear main body and an error auxiliary. To tackle the loss of symmetry caused by unbalanced graphs and communication delays, a novel approach is proposed. The idea is to estimate the distance from each agent to the intersection set of all agents' constraint sets based on the properties of the projection on convex sets so as to show consensus convergence by contradiction. It is shown that the error auxiliary vanishes as time evolves and the linear main body converges to a vector with an exponential rate as a separate system. It is also shown that the communication delays do not affect the consensus stability and constrained consensus is reached even if the communication delays are arbitrarily bounded. Finally, a numerical example is included to illustrate the obtained theoretical results.