IEEE Transactions on Automatic Control, Vol.59, No.6, 1439-1453, 2014
Distributed RHC for Tracking and Formation of Nonholonomic Multi-Vehicle Systems
This paper considers the synchronous distributed receding horizon control (RHC) for a general problem of the nonholonomic multi-vehicle systems, i.e., the simultaneous forward/backward tracking, regulation and formation with the collision avoidance. First, for each vehicle, a positively invariant terminal-state region and an auxiliary controller are developed. When every vehicle lies in its terminal-state region, all the distributed control targets are achieved by the auxiliary controller. Second, the compatibility constraint, restricting the norm of the uncertain deviation between the assumed and actual predictive trajectories of each vehicle, is given, which respects both the collision avoidance and convergence guarantee. Thirdly, a robust collision avoidance constraint tolerating for the uncertain deviation is designed. By these designs, an overall control algorithm is proposed, by applying which all the control targets are achieved. Two illustrative examples are provided to show the advantage and effectiveness of the proposed approach.
Keywords:Collision avoidance;compatibility constraint;distributed receding horizon control (DRHC);nonholonomic multi-vehicles