Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.4, 645-652, August, 1997
RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰
A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode
초록
백금 회전전극을 이용하여 확산지배영역에서의 구리 착화합물의 환원에 대한 전기화학적 특성조사 및 이에 대한 속도인자들을 구하였다. 황산염 용액내에서 Cu(II)의 환원은 2전자, 1단계 반응이며, 염화물 용액내에서의 Cu(II)는 1전자, 2단계 반응으로 환원된다. 환원반응에서의 전달계수는 황산염 용액내에서 Cu(II)가 가장 작으며, 할로겐염 중에서 Cu(I)의 전달계수는 1에 가까운 값을 나타내었다. 염화물 용액안에서 구리이온의 환원에 대한 표준속도상수는 Cu(II)의 환원이 Cu(I)을 출발물질로 할 경우보다 100배 정도 빠른 값을 나타내었다. 그리고 확산계수는 Cl- 존재시의 Cu(II), I-, Br-, Cl- 존재시의 Cu(I) 및 SO4-2 존재시의 Cu(II)의 순으로 증가하였으며, 각 용액 내에서의 구리이온의 반지름 및 확산에 대한 활성화 에너지도 위의 순서와 동일하게 감소하였다. 회전전극상의 구리전착의 경우 전착전위 및 농도에 따라 불균일한 전착표면을 형성하였으며, 이러한 전착표면의 불균일성은 UV/VIS로 분석이 가능하였다.
Electrochemical characteristics and kinetic parameters of copper ion reduction were investigated with a platinum rotating disk electrode (RDE) in a diffusion controlled region. Reduction of Cu(II) in sulfate had one-step two-xelectron process, while the reduction of Cu(II) in chloride solution was involved two one-electron processes. The transfer coefficient of Cu(II) in sulfate solution was lowest, and the transfer coefficient of Cu(I) in halide solutions had the value of nearly one. In chloride solutions, electrodeposition rate of Cu(II) was about one hundred times faster than Cu(I). Diffusion coefficient increased in the order of Cu(II) in chloride solution, Cu(I) in the iodide, bromide, chloride solution, Cu(II) in sulfate solution. The calculated ionic radii and activation energy for diffusion decreased in the same order as above. Morphological study on the copper electrodeposition indicated that the electrode surface became rougher as both concentration and reduction potential increases, and the roughness of the surface was analyzed with UV/VIS spectrophotometer.
- Ashiru OA, Farr JPG, J. Electrochem. Soc., 139, 2806 (1992)
- Karasyk L, Linford B, J. Electrochem. Soc., 110, 895 (1963)
- Ying RY, J. Electrochem. Soc., 135, 2957 (1988)
- Ying RY, Ng PK, Mao Z, White RE, J. Electrochem. Soc., 135, 2964 (1988)
- Gregory DP, Riddiford AC, J. Electrochem. Soc., 101, 3756 (1954)
- Vetter KJ, "Electrochemical Kinetics," 682, Academic Press, New York (1967)
- Gieadi E, Kirowa-Eisner E, Penciner J, "Interfacial Electrochemistry," 43, Addison-Wesley, London (1975)
- Vielstich W, Gerischer H, Z. Physik. Chem., 4, 10 (1955)
- Cheh HY, Sard R, J. Electrochem. Soc., 118, 1737 (1971)
- Walch FC, Reade GW, "Environmental Oriented Electrochemistry," C.A.C. Sequeira, 5, Elsevier, Amsterdam (1994)
- Uceda D, O'Keefe T, J. Electrochem. Soc., 137, 1397 (1990)
- Pavlovic MG, Kindlova S, Rousar I, Electrochim. Acta, 37, 23 (1992)
- Sneed MC, Maynard JL, Brasted RC, "Comprehensive Inorganic Chemistry," 2, 47, D. Van Nostrand Company (1954)
- John AD, "Lange's Handbook of Chemistry," 14th ed., McGraw-Hill, New York (1992)
- Bard AJ, Faukner LR, "Electrochemical Method," John Wiley & Sons, New York (1980)
- Hibbert DB, "Introduction to Electrochemistry," 90, Macmillan, London (1993)
- Prentice G, "Electrochemical Engineering Principles," 6, Prentice Hall, New Jersey (1991)
- Van Vlack LH, "Elements of Materials Science and Engineering," 6th ed., 555, Addison-Wesley, New York (1989)