화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.5, 777-783, October, 1997
졸-겔법에 의한 TiO2 미분할 합성과 반응메카니즘(II):Titanium n-propoxide의 가수분해
Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide
초록
n-propanol 용매내에서 titanium n-propoxide(Ti(OnPr)4)의 가수분해반응에 의하여 TiO2미분말을 합성하였고, 가수분해속도를 자외선 분광법에 의하여 측정하였다. 분말합성은 water/alkoxide의 농도비가 약 300정도에서 실시하였으며, 물농도, 반응온도, 반응시간 및 반응용액의 산·염기효과에 의한 합성조건을 조사하였다. 반응은 Ti(OnPr)4의 농도에 비하여 물농도를 과량으로 하여 유사일차반응으로 진행시켰고, 반응속도상수를 Guggenheim method로 계산하였다. 또한 물의 동위원소효과(D2O)를 측정하여 반응에 관여하는 물분자의 촉매성을 확인하였다. 실험결과 중성 및 염기성 용액 조건에서 TiO2미분말이 합성되었고, 미세구조 관찰로부터 TiO2입자는 직경 0.4-0.7㎛정도의 구형입자로 확인되었으며, 물의 농도와 반응온도가 증가할수록, 반응시간이 감소할수록 입자크기는 작아지는 경향을 보였다. 물의 동위원소효과로부터, 물분자는 nucleophilic catalysis로 작용하고 있으며, 반응속도로부터 전이상태에 참여하는 n-value와 열역학적 파라미터를 계산한 결과, Ti(OnPr)4의 가수분해반응은 이분자 반응인 associative SN2 mechanism으로 진행하는 것으로 추정되었다.
TiO2 powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for TiO2 powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using D2O was also carried out to determine the catalytic character of water. TiO2 powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of 0.4-0.7㎛ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative SN2 mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. D2O solvent isotope effect showed that H2O molecules reacted as nucleophilic catalysis.
  1. Bradley DC, "Metal Alkoxides, Advances in Chemistry Series," 23, 10 (1959)
  2. Bradley DC, Mehrotra RC, Gaur DP, Academic Press, 19 (1978)
  3. Mehrotra RC, J. Non-Cryst. Solids, 100, 1 (1988) 
  4. Livage J, Henry M, Sanchez C, "Sol-Gel Chemistry of Transition Metal Oxide, Progress in Solid State Chemistry," 18, 259 (1988)
  5. Pohl ER, Osterholtz FD, "Molecular Characterization of Composite Interfaces," Plenum, New York, 157 (1985)
  6. Iler RK, "The Chemistry of Silica," John Wiley & Sons, N.Y. (1979)
  7. Keefer KD, "Better Ceramics through Chemistry," Eds. C.J. Brinker, D.E. Clark, and D.R. Ulrich, North-Holland, N.Y., 15 (1984)
  8. Timms RE, J. Chem. Soc., 1969 (1971)
  9. Okkerse C, "Physical and Chemical Aspects of Adsirbents and Catalysts," Academic Press, New York (1978)
  10. Uhlmann DR, Jelinski BJ, Wrek GE, "Better Ceramics through Chemistry," New York, 59 (1984)
  11. Swain CG, Esteve RM, Jones RH, J. Am. Chem. Soc., 11, 965 (1989)
  12. Myung JJ, Chung YS, Kyong JB, Kim HK, J. Korean Ind. Eng. Chem., 7(4), 794 (1996)
  13. Guggenheim EA, Phil. Mag., 2, 538 (1926)
  14. Bacon JR, Demos JN, Anal. Chem., 55, 653 (1983) 
  15. Ikemoto T, Uematsu K, Mizutani N, Kato M, 窯業協會紙, 93, 261 (1985)
  16. Jean JH, Goy DM, Ring TA, Am. Ceram. Soc. Bull., 66(10), 1517 (1987)
  17. Keefer KD, "Better Ceramics through Chemistry," eds. C.J. Brinker, D.E. Clark and D.R. Ulrich, North-Holland, N.Y., 15 (1984)
  18. Kingery WD, Bowen HK, Uhlmann DR, "Introduction to Ceramics," 2nd, John Wiley & Sons, New York, 95 (1960)
  19. Williams CE, May RP, Guinier A, "Material Science and Technology," ed. R.W. Cahn, D. Haasen and E.J. Kramer, 2B, VCH, New York, 611 (1993)
  20. Fedor LR, Bruice TC, J. Am. Chem. Soc., 87, 4138 (1965) 
  21. Bunton CA, Shiner VJ, J. Am. Chem. Soc., 83, 3207 (1961) 
  22. Gopalakrishnan G, Hogg JL, J. Org. Chem., 46, 4959 (1981) 
  23. Kivinen A, Acta Chem. Scand., 19, 845 (1965)
  24. Hudson RF, Ber. Bunsenges Phys. Chem., 68, 215 (1964)
  25. Alder RW, Baker R, Brown JM, "Mechanism in Organic Chemistry," Chap. 3, Wiley-Interscience, London (1971)
  26. Tashma R, Rappoport Z, J. Am. Chem. Soc., 99, 1845 (1977)