화학공학소재연구정보센터
Journal of Materials Science, Vol.49, No.5, 2063-2069, 2014
Influence of graphene nanoplatelets content on the structure and properties of macroporous carbon foams prepared by organic colloidal templates
Graphene nanoplatelets (GNPs)-reinforced carbon foams have been fabricated by polycondensation of resorcinol-formaldehyde resin as a carbon precursor and GNPs as a reinforcing material. The pore structure, mechanical properties, and electrical conductivity were investigated in terms of the amount of the GNPs. The results show that the amount of GNPs has a considerable influence on compressive strength, electrical conductivity, and specific capacitance. Although the amount of GNPs added does not influence the pore structure, the mechanical properties, electrical conductivity, and specific capacitance of carbon foams were improved with increasing the GNPs content. With 5 wt% addition of GNPs, the compressive strength, electrical conductivity, and specific capacitance increased by 75.2, 240.26, and 53.36 %, respectively.