화학공학소재연구정보센터
Biomass & Bioenergy, Vol.37, 97-105, 2012
Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw
The influence of pyrolysis temperature and residence time on the char yields and resultant char characteristics were investigated in the isothermal pyrolysis of flax straw. The pyrolysis temperature was varied in the range between 300 and 500 degrees C and reaction residence time was varied from 15 to 60 mm. The char yield was found to decrease with both increasing pyrolysis temperature and residence time. The char structure and physical characteristics were thoroughly investigated by means of X-ray diffraction (XRD), temperature-programmed oxidation (TPO) and N-2 physisorption techniques. The results show that the degree of porosity and graphitization increased with increasing pyrolysis temperature and time. TPO studies on the char samples corroborate well with the XRD findings and showed the presence of two types of carbon; namely, amorphous filamentous carbon and crystalline graphitic carbon. Thermogravimetric analysis (TGA) of the char was performed to understand the combustion kinetics and reactivity. Chars formed at lower pyrolysis temperatures were found to be more reactive than the chars produced at higher pyrolysis temperatures, and these findings are well supported by the TPO, TGA, N-2 physisorption and XRD characterization data. Furthermore, an empirical global kinetic model was devised based on power law and used to estimate the activation energy and other kinetic parameters of both flax straw pyrolysis and char combustion processes. (C) 2011 Elsevier Ltd. All rights reserved.