화학공학소재연구정보센터
Biomass & Bioenergy, Vol.47, 516-521, 2012
Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites
By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. (C) 2012 Elsevier Ltd. All rights reserved.