화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.1, 52-57, February, 1998
전해질 첨가제가 알루미늄-공기전지의 성능에 미치는 영향
Effect of Electrolyte-Additives on the Performance of Al-Air Cells
초록
알루미늄-공기전지의 4M KOH전해질에 아연화합물과 같은 첨가제를 넣어 수소발생 및 알루미늄의 부식에 미치는 영향을 검토하였다. 첨가제중의 아연화합물은 수소발생과전압을 증가시키고, TPC(tripotasium citrate)와 CaO는 알루미늄표면에 치밀한 막을 형성하여 수소발생속도와 알루미늄부식속도를 감소시켰다. 이들 첨가제들에 의해 고순도알루미늄(순도, 99.999%)의 개회로전위는 양의 방향으로, 알루미늄 No 1050(순도, 99.5%)의 개회로전위는 음의 방향으로 약간 이동했다. 개회로전위에서 첨가제는 수소발생속도와 알루미늄 부식속도를 감소시켰으며, 과전압이 증가할수록 수소발생속도가 감소하여 알루미늄의 이용율이 증가하였다. 높은 전류밀도(>100mA/cm2)에서는 TPC/CaO/ZnO 첨가제에 의해 고순도 알루미늄의 이용율이 In,Ga,T1 합금 알루미늄의 이용율과 비슷하였다
The effects of additives such as zinc compounds in 4M KOH electrolyte of Al-air cell have been studied. Zinc compounds in electrolyte increased hydrogen evolution overpotential and TPC(tripotasium citrate)/CaO formed fine film on aluminum surface, and these additives decreaed hydrogen evolution rate and corrosion rate of aluminum. These additives shifted the OCP in the positive direction on high purity aluminum(purity, 99.999%) and in the negative direction on Al No 1050(purity,99.5%). Addition of two or more additives resulted in the prevention or the reduction of corrosion rate and hydrogen evolution at OCP. As the overpotential on Al electrode increased, the hydrogen evolution rate decreased and the utilization of aluminum increased. At high current density(>100mA/cm2), TPC/CaO/ZnO additives increased the utilization of high purity aluminum up to that of aluminum alloys containing indium, gallium and thallium.
  1. Littauer EL, Cooper JF, Handbook of Batteries and Fuel Cells (ed. D. Linden), London, McGraw-Hill, 30 (1984)
  2. Mckubre MCH, Macdonald DD, J. Electrochem. Soc., 128, 524 (1981) 
  3. Hendrikx J, Visscher W, Barendrecht E, J. Appl. Electrochem., 16, 175 (1986) 
  4. Hurot M, Compt. Rend., 40, 1148 (1855)
  5. Zaromb S, Foust RA, J. Electrochem. Soc., 109, 1191 (1962)
  6. Bocksite L, Trevethan D, Zaromb S, J. Electrochem. Soc., 110, 267 (1963)
  7. Parish DW, "Demonstration of Al-Air Fuel Cells in a Road Vehicle," SAE Technical Paper Series Number 891690, 65 (1989)
  8. Gibbons DW, Rudd EJ, "The Development of Al/Air Batteries for Propulsion Applications," ELTECH Research Corp., 93475 (1993)
  9. Gregg DW, Hall SE, "Engineering Development Program of a Closed Aluminum-Oxygen Semi-Cell System for an Unmanned Underwater Vehicle-an Update," NASA Conference Publication, No. 3337, 119 (1996)
  10. Scamans GM, "Aluminum Fuel Cell Power Sources for Long Range Unmanned Underwarter Vehicles," IEEe Symposium on Autonomous Underwater Vehicle Technology 1994. IEEE, Piscataway, NJ, USA, 94CH3393-6, 179 (1994)
  11. Macdonald DD, Real S, Urguidi-Macdonald M, J. Electrochem. Soc., 135, 2397 (1988) 
  12. Despic AK, Drazic DM, Purenovic MM, Cikovic N, J. Appl. Electrochem., 6, 527 (1976) 
  13. Tuck CDS, Hunter JA, Scamans GM, J. Electrochem. Soc., 134, 2970 (1987) 
  14. Vijh AK, J. Phisical Chem., 73, 506 (1969) 
  15. Macdonald DD, Lee KH, Moccari A, Harrington D, Corrosion Sci., 44, 652 (1988)