화학공학소재연구정보센터
Bioresource Technology, Vol.131, 179-187, 2013
Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids
An immobilization strategy was employed to improve activity and operational stability of Yarrowia lipolytica lipase LIP2 (YlLIP2) by using macroporous resins as carrier. D152H, a cation-exchange resin, was the best support. Under the optimized conditions, the immobilization efficiency was 89.81% and the specific activity was 809,751 U/g, being 2.1-fold higher than that of the free lipase. Bioimprinting and interfacial activation were used to further boost the catalytic activity of YlLIP2, respectively enhanced 21.5-fold, 231.2% and 107.2% compared to the free, non-bioimprinted and non-interfacial-activated lipases. The immobilized lipase exhibited much better thermal and pH stability and broader substrate specificity; when used to enrich docosahexaenoic acid (DHA) from Chlorella protothecoides oil, it could increase 1.66-fold of DHA content and show good operational stability. These indicate that the immobilized YlLIP2 offers a promising approach for the enrichment of DHA. (C) 2012 Elsevier Ltd. All rights reserved.