Bioresource Technology, Vol.141, 41-45, 2013
Removal of N-nitrosamines by an aerobic membrane bioreactor
This study investigated the fate of eight N-nitrosamines during membrane bioreactor (MBR) treatment. The results suggest that biodegradation is mainly responsible for the removal of N-nitrosamines during MBR treatment. Other removal mechanisms were insignificant (e.g. adsorption to sludge) or not expected (e.g. photolysis and volatilization) given the experimental conditions and physicochemical properties of the N-nitrosamines studied here. N-nitrosamine removal efficiencies were from 24% to 94%, depending on their molecular properties. High removal of N-nitrosamines such as N-nitrosodimethylamine and N-nitrosodiethylamine could be explained by the presence of strong electron donating functional groups (EDG) in their structure. In contrast, N-nitrosomorpholine possessing the weak EDG morpholine was persistent to biodegradation. The removal efficiency of N-nitrosomorpholine was 24% and was the lowest amongst all N-nitrosamines investigated in this study. Crown Copyright (c) 2013 Published by Elsevier Ltd. All rights reserved.
Keywords:Membrane bioreactor (MBR);Emerging trace organics;N-nitrosamines;Biodegradation;Removal mechanism