Chemical Engineering and Processing, Vol.67, 2-15, 2013
Optimisation-based design method for membrane-assisted separation processes
This paper presents a design method for membrane-assisted separation processes based on the concept of process superstructure optimisation, which should be applied to the separation of azeotropic mixtures. The main features of the proposed method are as follows: (i) detailed rate-based modelling of all unit operations; (ii) experimental model identification for membrane separation; (iii) application of an evolutionary algorithm. This method allows the simultaneous determination of optimal process configuration, equipment design and operating conditions for membrane-assisted separation processes. A case study for the separation of a ternary mixture of acetone, isopropyl alcohol and water in a hybrid pervaporation-distillation process is presented using the optimisation-based design method. Detailed rate-based models for the unit operations involved were implemented in a generic process model and necessary membrane model parameters were determined experimentally in a laboratory-scale device for the hydrophilic polymeric membrane Pervap (TM) 2201D from Sulzer Chemtech. After the identification of an appropriate process superstructure, the process configuration, dimensions of equipment and operating conditions required for the optimal hybrid pervaporation-distillation process were determined simultaneously. The optimisation criterion was the cost for purifying one ton of acetone. The results show that the developed method can be applied successfully for this complex mixed-integer non-linear optimisation problem. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Hybrid process;Distillation;Pervaporation;Experimental membrane characterisation;Rate-based modelling;Evolutionary optimisation