화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.70, 1-8, 2013
Research on the preparation technology of polyaniline nanofiber based on high gravity chemical oxidative polymerization
Polyaniline (PANI) nanofibers with higher yield and homogeneous morphology were successfully prepared in larger scale by multi-step oxidation process with high gravity chemical oxidative polymerization (HGCOP) method in a rotating packed bed (RPB) under a higher initial aniline concentration of 0.5 M. The influence of oxidation times and ammonium peroxydisulfate (APS) dosages on the morphology, yield and conductive property of PANI were investigated, the products were characterized by SEM and UV-vis. Moreover, the anti-corrosion property and water dispersity of the as-prepared PANI nanofibers were also studied. The results showed that two-step oxidation process was an efficient way for mass production of PANI nanofibers by HGCOP, in which the optimum molar ratio of APS/aniline in the first and second oxidation stage was 0.5 and 0.25, respectively. PANI nanofibers with yield of 76.1%, diameters of 50-80 nm and average aspect ratio of 9.7 were obtained under the optimized condition. The PANI nanofibers were highly dispersible in water and exhibited an outstanding anti-corrosion effect, which could be applied to the environment-friendly processing and applications. (C) 2013 Elsevier B.V. All rights reserved.