화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.3, 342-347, June, 1998
전도성 복합소재의 합성과 특성연구
Preparation and Characterization of Conducting Composites Impregnated with Thick Polyheterocyclic Polymers
초록
경량성의 전도성복합수지는 전도성고분자인 폴리피롤과 폴리티오펜이 다공성의 가교폴리스티렌의 내부에 분산되어 전도성네트워크를 형성시킴으로 제조된다. 높은 다공성과 친유성의 특성을 갖는 호스트고분자는 고농축에멀션중합방법을 이용하여 합성하고 전도성복합수지는 이 호스트고분자를 이용하여 이단계 함침방법으로 제조한다. FeCl3을 개시제와 혼입체로 사용하여 제조한 폴리피롤복합수지의 전기전도도는 0.82 S/cm이며, FeCl3-아세토니트릴을 개시제로 사용하여 제조한 폴리티오펜복합수지는 전기전도도가 6.05 S/cm에 이른다. 전도성복합수지의 전기전도도는 사용된 산화제 용매와 초기산화제와 단량체 몰비율에 크게 영향을 받는다. 전자현미경조사에 의하면 전도성고분자가 다공성 호스트고분자 내부벽에 필림을 형성한다. 폴리피롤소재복합수지와 폴리티오펜소재복합수지의 전기차단효율은 2.0 GHz에서 각각 15.2dB와 22.5dB였다. 20K-300K의 온도범위에서 저항의 온도의존성에 대한 실험결과에 의하면 전도성복합수지는 반도체특성을 보이고 전기전도기구는 전형적인 VRH모델을 따른다.
Light-weight conductive polymer composites were prepared by incorporating polyheterocycles such as polypyrrole and polythiophene into pores of a highly porous cross-linked polystyrene, host polymer, to form a conductive network. The highly hydrophobic and porous host polymer was synthesized by concentrated emulsion polymerization method. Polypyrrole-based composites, prepared by employing ferric chloride-methanol system, showed a conductivity as high as 0.82 S/cm. Conductivity of polythiophene-based composites, prepared from ferric chloride-acetonitrile system, was 6.05 S/cm. Conductivity of compositivity was influenced by the initial molar ratio of oxidant to monomer as well. SEM micrographs of the composites showed that conducting polymer coated uniformly the inside wall of the porous host polymer. Shielding effectiveness of the polypyrrole-based composites and of the polythiophene-based composites were 15.2 dB and 22.5 dB at 2.0 GHz, respectively. In the temperature range from 20 to 300K, a polypyrrole impregnated composite exhibited seimiconducting behavior and followed the variable range hopping(VRH) model for charge transport.
  1. Frommer JE, Chance RR, Encyclopedia of Polymer Science and Engineering, vol. 5, Wiley, New York, p. 462 (1985)
  2. Lindsey SE, Street GB, Synth. Met., 22, 145 (1987) 
  3. Roberts WP, Schutz A, U.S. Patent, 4,604,427 (1986)
  4. Bjorklund RB, Lundstrom I, J. Electron. Mater., 13, 211 (1984)
  5. Frisch HL, J. Polym. Sci. A: Polym. Chem., 30, 937 (1992) 
  6. Ruckenstein E, Park JS, J. Appl. Polym. Sci., 42, 925 (1991) 
  7. Diaz AF, Kanazawa KK, J. Chem. Soc.-Chem. Commun., 635 (1979)
  8. Myers RE, J. Electron. Mater., 2, 61 (1986)
  9. Lin WP, Duck LP, J. Polym. Sci. A: Polym. Chem., 18, 2869 (1980)
  10. Hatta S, Hosaka T, Shimotsuma W, Synth. Met., 24, 223 (1988) 
  11. Gregory RV, Kimbrell WC, Kuhn HH, Synth. Met., 26, 529 (1988)
  12. Pakr JS, Ruckenstein E, J. Electron. Mater., 21, 205 (1992)
  13. Ruckenstein E, Park JS, Polymer, 33, 405 (1992) 
  14. Margolis JM, "Conductive Polymers and Plastics," Chapman and Hall, New York (1989)
  15. Holbrook AL, Int. J. Powder Metall., 22, 39 (1986)
  16. Digg DM, Stutz DE, Polym. Compos., 4, 40 (1983) 
  17. Bocchi V, Gardini GP, Rapi S, J. Mater. Sci. Lett., 6, 1283 (1987) 
  18. Gindrup WL, Pigm. Resin Technol., 18, 14 (1989)
  19. Ogasawara M, Funahashi K, Iwato K, Mol. Cryst. Liq. Cryst., 118, 159 (1985)
  20. Maddison DS, Tansley TL, J. Appl. Phys., 72, 4677 (1992)